Space Physics and Aeronomy, Solar Physics and Solar Wind

Здесь есть возможность читать онлайн «Space Physics and Aeronomy, Solar Physics and Solar Wind» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Space Physics and Aeronomy, Solar Physics and Solar Wind: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Space Physics and Aeronomy, Solar Physics and Solar Wind»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

A comprehensive view of our Sun at the start of a new era in solar and heliospheric physics Humans have been observing and studying our Sun for centuries, yet much is still unknown about the processes that drive its behavior. Thanks to a new generation of space missions and ground telescopes, we are poised to dramatically increase our understanding of the Sun and its environment.
Solar Physics and Solar Wind Volume highlights include:
Explanations for processes in the solar interior New insights on the solar wind The challenges of measuring the Sun's magnetic field and its radiative output Description of solar atmospheric phenomena such as spicules and jets New developments in understanding flares and coronal mass ejections Ongoing research into how the solar corona is heated The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.

Space Physics and Aeronomy, Solar Physics and Solar Wind — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Space Physics and Aeronomy, Solar Physics and Solar Wind», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

178 Neugebauer, M. and Giacalone, J. (2015, October). Energetic particles, tangential discontinuities, and solar flux tubes. Journal of Geophysical Research: Space Physics 120: 8281–8287. https://doi.org/10.1002/2015JA021632.

179 Neugebauer, M., Goldstein, B.E., McComas, D.J. et al. (1995, December). Ulysses observations of microstreams in the solar wind from coronal holes. Journal of Geophysical Research: Space Physics 100: 23389–23396. https://doi.org/10.1029/95JA02723.

180 Neugebauer, M., Ruzmaikin, A., & McComas, D. J. (1997, January). Wavelet analysis of the structure of microstreams in the polar solar wind. In S. R. Habbal (Ed.), Robotic exploration close to the sun: Scientific basis (Vol. 385, p. 41–46). doi: https://doi.org/10.1063/1.51765.

181 Neugebauer, M. and Snyder, C.W. (1962, December). Solar plasma experiment. Science 138: 1095–1097. https://doi.org/10.1126/science.138.3545.1095‐a.

182 Nicol, R.M., Chapman, S.C., and Dendy, R.O. (2009, October). Quantifying the anisotropy and solar cycle dependence of “1/f” solar wind fluctuations observed by advanced composition explorer. The Astrophysical Journal 703: 2138–2151. https://doi.org/10.1088/0004‐637X/703/2/2138.

183 Noci, G., Kohl, J.L., and Withbroe, G.L. (1987, April). Solar wind diagnostics from Doppler‐enhanced scattering. The Astrophysical Journal 315: 706–715. https://doi.org/10.1086/165172.

184 Ogilvie, K.W., Fitzenreiter, R., and Desch, M. (2000, December). Electrons in the low‐density solar wind. Journal of Geophysical Research: Space Physics 105: 27277–27288. https://doi.org/10.1029/2000JA000131.

185 Oran, R., van der Holst, B., Landi, E. et al. (2013, December). A global wave‐driven magnetohydrodynamic solar model with a unified treatment of open and closed magnetic field topologies. The Astrophysical Journal 778: 176. https://doi.org/10.1088/0004‐637X/778/2/176.

186 Owens, M.J. and Forsyth, R.J. (2013). The heliospheric magnetic field. Living Reviews in Solar Physics 10.

187 Owens, M.J., Crooker, N.U., and Lockwood, M. (2013, May). Solar origin of heliospheric magnetic field inversions: Evidence for coronal loop opening within pseudostreamers. Journal of Geophysical Research: Space Physics 118: 1868–1879. https://doi.org/10.1002/jgra.50259.

188 Owens, M. J., Wicks, R. T., & Horbury, T. S. (2011, April). Magnetic discontinuities in the near‐earth solar wind: Evidence of in‐transit turbulence or remnants of coronal structure?, 269, 411‐420. doi: https://doi.org/10.1007/s11207‐010‐9695‐0.

189 Parker, E.N. (1958, November). Dynamics of the interplanetary gas and magnetic fields. The Astrophysical Journal 128: 664. https://doi.org/10.1086/146579.

190 Perri, S., Goldstein, M.L., Dorelli, J.C., and Sahraoui, F. (2012, November). Detection of small‐scale structures in the dissipation regime of solar‐wind turbulence. Physical Review Letters 109 (19): 191101. https://doi.org/10.1103/ PhysRevLett.109.191101.

191 Perrone, D., Alexandrova, O., Mangeney, A. et al. (2016, August). Compressive coherent structures at ion scales in the slow solar wind. The Astrophysical Journal 826: 196. https://doi.org/10.3847/0004‐637X/826/2/196.

192 Perrone, D., Alexandrova, O., Roberts, O.W. et al. (2017, November). Coherent structures at ion scales in fast solar wind: Cluster observations. The Astrophysical Journal 849: 49. https://doi.org/10.3847/1538‐4357/aa9022.

193 Phan, T.D., Gosling, J.T., Davis, M.S. et al. (2006, January). A magnetic reconnection X‐line extending more than 390 Earth radii in the solar wind. Nature 439 (7073): 175–178. https://doi.org/10.1038/nature04393.

194 Pierrard, V. (2011, February). Solar wind electron transport: Interplanetary electric field and heat conduction. 172: 315–324. https://doi.org/10.1007/s11214‐011‐9743‐6.

195 Pierrard, V., & Lamy, H. (2003, September). The effects of the velocity filtration mechanism on the minor ions of the corona. Solar Physics, 216, 47–58. doi: 10.1023/ A:1026157306754.

196 Pierrard, V. and Lazar, M. (2010, November). Kappa distributions: Theory and applications in space plasmas. Solar Physics 267: 153–174. https://doi.org/10.1007/s11207‐010‐9640‐2.

197 Pierrard, V., Lazar, M., Poedts, S. et al. (2016, August). The electron temperature and anisotropy in the solar wind. comparison of the core and halo populations. Solar Physics 291: 2165–2179. https://doi.org/10.1007/s11207‐016‐0961‐7.

198 Pierrard, V., Lazar, M., and Schlickeiser, R. (2011, April). Evolution of the electron distribution function in the whistler wave turbulence of the solar wind. Solar Physics 269: 421–438. https://doi.org/10.1007/s11207‐010‐9700‐7.

199 Pierrard, V., Maksimovic, M., and Lemaire, J. (1999, August). Electron velocity distribution functions from the solar wind to the corona. Journal of Geophysical Research: Space Physics 104: 17021–17032. https://doi.org/10.1029/1999JA900169.

200 Pierrard, V. and Pieters, M. (2014, December). Coronal heating and solar wind acceleration for electrons, protons, and minor ions obtained from kinetic models based on kappa distributions. Journal of Geophysical Research: Space Physics 119: 9441–9455. https://doi.org/10.1002/2014JA020678.

201 Pilipp, W.G., Miggenrieder, H., Montgomery, M.D. et al. (1987, February). Characteristics of electron velocity distribution functions in the solar wind derived from the HELIOS plasma experiment. Journal of Geophysical Research: Space Physics 92: 1075–1092. https://doi.org/10.1029/JA092iA02p01075.

202 Pilipp, W.G., Muehlhaeuser, K.‐H., Miggenrieder, H. et al. (1990, May). Large‐scale variations of thermal electron parameters in the solar wind between 0.3 and 1 AU. Journal of Geophysical Research: Space Physics 95: 6305–6329. https://doi.org/10.1029/JA095iA05p06305.

203 Pinto, R.F., Brun, A.S., Jouve, L., and Grappin, R. (2011, August). Coupling the solar dynamo and the corona: Wind properties, mass, and momentum losses during an activity cycle. The Astrophysical Journal 737: 72. https://doi.org/10.1088/0004‐637X/737/2/72.

204 Pinto, R. F., Brun, A. S., & Rouillard, A. P. (2016, August). Flux‐tube geometry and solar wind speed during an activity cycle. Astronomy & Astrophysics, 592, A65. Retrieved 2019‐03‐04, from https://www.aanda.org/articles/aa/abs/2016/08/aa28599‐16/aa28599‐16.html doi: https://doi.org/10.1051/0004‐6361/ 201628599.

205 Pinto, R.F. and Rouillard, A.P. (2017, April). A multiple flux‐tube solar wind model. The Astrophysical Journal 838: 89. https://doi.org/10.3847/1538‐4357/aa6398.

206 Pizzo, V.J. (1982, June). A three‐dimensional model of corotating streams in the solar wind. III ‐ Magnetohydrodynamic streams. Journal of Geophysical Research: Space Physics 87: 4374–4394. https://doi.org/10.1029/ JA087iA06p04374.

207 Podesta, J. J., Roberts, D. A., & Goldstein, M. L. (2006, October). Power spectrum of small‐scale turbulent velocity fluctuations in the solar wind. Journal of Geophysical Research: Space Physics, 111 (A10), 10109‐+. doi: 10.1029/2006JA011834.

208 Poletto, G. (2015, December). Solar coronal plumes. Living Reviews in Solar Physics 12: 7. https://doi.org/10.1007/lrsp‐2015‐7.

209 Pylaev, O.S., Zaqarashvili, T.V., Brazhenko, A.I. et al. (2017, May). Oscillation of solar radio emission at coronal acoustic cut‐off frequency. Astronomy and Astrophysics 601: A42. https://doi.org/10.1051/0004‐6361/201629218.

210 Rakowski, C.E. and Laming, J.M. (2012). On the origin of the slow speed solar wind: helium abundance variations. The Astrophysical Journal 754 (1): 65.

211 Raouafi, N.E., Patsourakos, S., Pariat, E. et al. (2016, November). Solar coronal jets: Observations, theory, and modeling. Space Science Reviews 201: 1–53. https://doi.org/10.1007/s11214‐016‐0260‐5.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Space Physics and Aeronomy, Solar Physics and Solar Wind»

Представляем Вашему вниманию похожие книги на «Space Physics and Aeronomy, Solar Physics and Solar Wind» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Space Physics and Aeronomy, Solar Physics and Solar Wind»

Обсуждение, отзывы о книге «Space Physics and Aeronomy, Solar Physics and Solar Wind» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x