Space Physics and Aeronomy, Solar Physics and Solar Wind

Здесь есть возможность читать онлайн «Space Physics and Aeronomy, Solar Physics and Solar Wind» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Space Physics and Aeronomy, Solar Physics and Solar Wind: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Space Physics and Aeronomy, Solar Physics and Solar Wind»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

A comprehensive view of our Sun at the start of a new era in solar and heliospheric physics Humans have been observing and studying our Sun for centuries, yet much is still unknown about the processes that drive its behavior. Thanks to a new generation of space missions and ground telescopes, we are poised to dramatically increase our understanding of the Sun and its environment.
Solar Physics and Solar Wind Volume highlights include:
Explanations for processes in the solar interior New insights on the solar wind The challenges of measuring the Sun's magnetic field and its radiative output Description of solar atmospheric phenomena such as spicules and jets New developments in understanding flares and coronal mass ejections Ongoing research into how the solar corona is heated The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.

Space Physics and Aeronomy, Solar Physics and Solar Wind — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Space Physics and Aeronomy, Solar Physics and Solar Wind», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

41 Chalov, S.V., Fahr, H.J., and Izmodenov, V.V. (2003, June). Evolution of pickup proton spectra in the inner heliosheath and their diagnostics by energetic neutral atom fluxes. Journal of Geophysical Research: Space Physics 108: 1266. https://doi.org/10.1029/2002JA009492.

42 Chandran, B.D.G. (2018, February). Parametric instability, inverse cascade and the range of solar‐wind turbulence. Journal of Plasma Physics 84 (1): 905840106. https://doi.org/10.1017/S0022377818000016.

43 Chapman, S. and Ferraro, V.C.A. (1931). A new theory of magnetic storms. Terrestrial Magnetism and Atmospheric Electricity (Journal of Geophysical Research) 36: 77. https://doi.org/10.1029/TE036i002p00077.

44 Chapman, S. and Zirin, H. (1957). Notes on the solar corona and the terrestrial ionosphere. Smithsonian Contributions to Astrophysics 2: 1.

45 Chen, C.H.K., Horbury, T.S., Schekochihin, A.A. et al. (2010, June). Anisotropy of solar wind turbulence between ion and electron scales. Physical Review Letters 104 (25): 255002. https://doi.org/10.1103/PhysRevLett.104.255002.

46 Chollet, E. E., & Giacalone, J. (2011, February). Evidence of confinement of solar‐energetic particles to interplanetary magnetic field lines. The Astrophysical Journal, 728, 64. doi: 10 .1088/0004‐637X/728/1/64.

47 Chollet, E.E., Giacalone, J., Mazur, J.E., and Al Dayeh, M. (2007, November). A new phenomenon in impulsive‐flare‐associated energetic particles. The Astrophysical Journal 669: 615–620. https://doi.org/10.1086/521670.

48 Claudepierre, S. G., Hudson, M. K., Lotko, W., Lyon, J. G., & Denton, R. E. (2010, November). Solar wind driving of magnetospheric ULF waves: Field line resonances driven by dynamic pressure fluctuations. Journal of Geophysical Research: Space Physics, 115, A11202. doi: https://doi.org/10.1029/2010JA015399.

49 Coburn, J.T., Smith, C.W., Vasquez, B.J. et al. (2014, May). Variable cascade dynamics and intermittency in the solar wind at 1 AU. The Astrophysical Journal 786: 52. https://doi.org/10.1088/0004‐637X/786/1/52.

50 Collier, M.R., Slavin, J.A., and Lepping, R.P. (2000, June). IMF length scales and predictability: The two length scale medium. International Journal of Geomagnetism and Aeronomy 2: 3–16. https://doi.org/10.1029/2012JA017525.

51 Cranmer, S.R., Field, G.B., and Kohl, J.L. (1999, June). Spectroscopic constraints on models of ion cyclotron resonance heating in the polar solar corona and high‐speed solar wind. The Astrophysical Journal 518: 937–947. https://doi.org/10.1086/307330.

52 Cranmer, S.R., van Ballegooijen, A.A., and Woolsey, L.N. (2013, April). Connecting the Sun’s high‐resolution magnetic carpet to the turbulent heliosphere. The Astrophysical Journal 767: 125. https://doi.org/10.1088/0004‐637X/767/2/125.

53 Crooker, N.U., Antiochos, S.K., Zhao, X., and Neugebauer, M. (2012, April). Global network of slow solar wind. Journal of Geophysical Research: Space Physics 117: A04104. https://doi.org/10.1029/2011JA017236.

54 Crooker, N.U., Burton, M.E., Siscoe, G.L. et al. (1996, November). Solar wind streamer belt structure. Journal of Geophysical Research 101: 24331–24342. https://doi.org/10.1029/96JA02412.

55 Crooker, N.U., Kahler, S.W., Larson, D.E., and Lin, R.P. (2004, March). Large‐ scale magnetic field inversions at sector boundaries. Journal of Geophysical Research: Space Physics 109: A03108. https://doi.org/10.1029/2003JA010278.

56 Crooker, N.U., McPherron, R.L., and Owens, M.J. (2014, June). Comparison of interplanetary signatures of streamers and pseudostreamers. Journal of Geophysical Research: Space Physics 119: 4157–4163. https://doi.org/10.1002/2014JA020079.

57 Crooker, N.U., Siscoe, G.L., Russell, C.T., and Smith, E.J. (1982, April). Factors controlling degree of correlation between ISEE 1 and ISEE 3 interplanetary magnetic field measurements. Journal of Geophysical Research: Space Physics 87: 2224–2230. https://doi.org/10.1029/JA087iA04p02224.

58 Crooker, N.U., Siscoe, G.L., Shodhan, S. et al. (1993, June). Multiple heliospheric current sheets and coronal streamer belt dynamics. Journal of Geophysical Research: Space Physics 98: 9371–9381. https://doi.org/10.1029/93JA00636.

59 D’Amicis, R. and Bruno, R. (2015, May). On the origin of highly Alfvénic slow solar wind. The Astrophysical Journal 805: 84. https://doi.org/10.1088/0004‐637X/805/1/84.

60 D’Amicis, R., Matteini, L., & Bruno, R. (2018, December). On slow solar wind with high Alfv\’enicity: From composition and microphysics to spectral properties. arXiv e‐prints.

61 Dasso, S., Nakwacki, M.S., Démoulin, P., and Mandrini, C.H. (2007, August). Progressive transformation of a flux rope to an ICME. Comparative analysis using the direct and fitted expansion methods. Solar Physics 244: 115–137. https://doi.org/10.1007/s11207‐007‐9034‐2.

62 DeForest, C.E., Howard, R.A., Velli, M. et al. (2018, July). The highly structured outer solar corona. The Astrophysical Journal 862: 18. https://doi.org/10.3847/1538‐4357/aac8e3.

63 DeForest, C.E., Matthaeus, W.H., Viall, N.M., and Cranmer, S.R. (2016, September). Fading coronal structure and the onset of turbulence in the young solar wind. The Astrophysical Journal 828: 66. https://doi.org/10.3847/0004‐637X/828/2/66.

64 Denskat, K.U. and Neubauer, F.M. (1982, April). Statistical properties of low‐ frequency magnetic field fluctuations in the solar wind from 0.29 to 1.0 AU during solar minimum conditions – HELIOS 1 and HELIOS 2. Journal of Geophysical Research: Space Physics 87: 2215–2223. https://doi.org/10.1029/JA087iA04p02215.

65 Di Matteo, S., Viall, N.M., Kepko, L. et al. (2019). Helios observations of quasiperiodic density structures in the slow solar wind at 0.3, 0.4, and 0.6 AU. Journal of Geophysical Research: Space Physics 124 (2): 837–860. https://doi.org/10.1029/2018JA026182.

66 Di Matteo, S. and Villante, U. (2017, May). The identification of solar wind waves at discrete frequencies and the role of the spectral analysis techniques. Journal of Geophysical Research: Space Physics 122: 4905–4920. https://doi.org/10.1002/2017JA023936.

67 Dolei, S., Susino, R., Sasso, C. et al. (2018, May). Mapping the solar wind HI outflow velocity in the inner heliosphere by coronagraphic ultraviolet and visible‐light observations. Astronomy & Astrophysics (A&A) 612: A84. https://doi.org/10.1051/0004‐6361/201732118.

68 Domingo, V., Fleck, B., and Poland, A.I. (1995, December). The SOHO mission: An overview. Solar Physics 162: 1–37. https://doi.org/10.1007/BF00733425.

69 Dyrud, L.P., Behnke, R., Kepko, E.L. et al. (2008, July). Ionospheric ULF oscillations driven from above Arecibo. Geophysical Research Letters 35: L14101. https://doi.org/10.1029/2008GL034073.

70 Endeve, E., Holzer, T.E., and Leer, E. (2004, March). Helmet streamers gone unstable: Two‐fluid magnetohydrodynamic models of the solar corona. The Astrophysical Journal 603: 307–321. https://doi.org/10.1086/381239.

71 Eriksson, S., Gosling, J.T., Phan, T.D. et al. (2009). Asymmetric shear flow effects on magnetic field configuration within oppositely directed solar wind reconnection exhausts. Journal of Geophysical Research: Space Physics 114 (A7) https://doi.org/10.1029/2008JA013990.

72 Fahr, H.J. and Fichtner, H. (2011, September). Pick‐up ion transport under conservation of particle invariants: How important are velocity diffusion and cooling processes? Astronomy and Astrophysics 533: A92. https://doi.org/10.1051/0004‐6361/201116880.

73 Feng, H.Q., Wu, D.J., and Chao, J.K. (2007, February). Size and energy distributions of interplanetary magnetic flux ropes. Journal of Geophysical Research: Space Physics 112: A02102. https://doi.org/10.1029/2006JA011962.

74 Feng, H.Q., Wu, D.J., Wang, J.M., and Chao, J.W. (2011, March). Magnetic reconnection exhausts at the boundaries of small interplanetary magnetic flux ropes. Astronomy & Astrophysics 527: A67. https://doi.org/10.1051/0004‐6361/201014473.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Space Physics and Aeronomy, Solar Physics and Solar Wind»

Представляем Вашему вниманию похожие книги на «Space Physics and Aeronomy, Solar Physics and Solar Wind» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Space Physics and Aeronomy, Solar Physics and Solar Wind»

Обсуждение, отзывы о книге «Space Physics and Aeronomy, Solar Physics and Solar Wind» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x