Space Physics and Aeronomy, Solar Physics and Solar Wind

Здесь есть возможность читать онлайн «Space Physics and Aeronomy, Solar Physics and Solar Wind» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Space Physics and Aeronomy, Solar Physics and Solar Wind: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Space Physics and Aeronomy, Solar Physics and Solar Wind»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

A comprehensive view of our Sun at the start of a new era in solar and heliospheric physics Humans have been observing and studying our Sun for centuries, yet much is still unknown about the processes that drive its behavior. Thanks to a new generation of space missions and ground telescopes, we are poised to dramatically increase our understanding of the Sun and its environment.
Solar Physics and Solar Wind Volume highlights include:
Explanations for processes in the solar interior New insights on the solar wind The challenges of measuring the Sun's magnetic field and its radiative output Description of solar atmospheric phenomena such as spicules and jets New developments in understanding flares and coronal mass ejections Ongoing research into how the solar corona is heated The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.

Space Physics and Aeronomy, Solar Physics and Solar Wind — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Space Physics and Aeronomy, Solar Physics and Solar Wind», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

111 Jian, L., Russell, C.T., Luhmann, J.G., and Skoug, R.M. (2006, December). Properties of stream interactions at one AU during 1995 2004. Solar Physics 239: 337–392. https://doi.org/10.1007/s11207‐006‐0132‐3.

112 Jian, L.K., Wei, H.Y., Russell, C.T. et al. (2014, May). Electromagnetic waves near the proton cyclotron frequency: STEREO observations. The Astrophysical Journal 786: 123. https://doi.org/10.1088/0004‐637X/786/2/123.

113 Jovanović, D., Alexandrova, O., Maksimović, M., and Belic, M. (2020, June). Fluid Theory of Coherent Magnetic Vortices in High‐β Space Plasmas. The Astrophysical Journal 896 (1):8. https://doi.org/10.3847/1538‐4357/ab8a45.

114 Kahler, S. and Lin, R.P. (1994, July). The determination of interplanetary magnetic field polarities around sector boundaries using E greater than 2 keV electrons. Geophysical Research Letters 21: 1575–1578. https://doi.org/10.1029/94GL01362.

115 Kahler, S.W., Crooker, N.U., and Gosling, J.T. (1996, November). The topology of intrasector reversals of the interplanetary magnetic field. Journal of Geophysical Research 101: 24373–24382. https://doi.org/10.1029/96JA02232.

116 Kajdič, P., Alexandrova, O., Maksimovic, M. et al. (2016a, December). Suprathermal electron Strahl widths in the presence of narrow‐band whistler waves in the solar wind. The Astrophysical Journal 833: 172. https://doi.org/10.3847/1538‐4357/833/2/172.

117 Kajdič, P., Alexandrova, O., Maksimovic, M. et al. (2016b, December). Suprathermal electron strahl widths in the presence of narrow‐band whistler waves in the solar wind. The Astrophysical Journal 833: 172. https://doi.org/10.3847/1538‐4357/833/2/172.

118 Karpen, J.T., DeVore, C.R., Antiochos, S.K., and Pariat, E. (2017, January). Reconnection‐driven coronal‐hole jets with gravity and solar wind. The Astrophysical Journal 834: 62. https://doi.org/10.3847/1538‐4357/834/1/62.

119 Kasper, J.C., Stevens, M.L., Korreck, K.E. et al. (2012, February). Evolution of the relationships between helium abundance, minor ion charge state, and solar wind speed over the solar cycle. The Astrophysical Journal 745: 162. https://doi.org/10.1088/0004‐637X/745/2/162.

120 Kennel, C.F. and Engelmann, F. (1966, December). Velocity space diffusion from weak plasma turbulence in a magnetic field. Physics of Fluids 9: 2377–2388. https://doi.org/10.1063/1.1761629.

121 Kepko, L. and Spence, H.E. (2003, June). Observations of discrete, global magnetospheric oscillations directly driven by solar wind density variations. Journal of Geophysical Research: Space Physics 108: 1257. https://doi.org/10.1029/2002JA009676.

122 Kepko, L., Spence, H.E., and Singer, H.J. (2002, April). ULF waves in the solar wind as direct drivers of magnetospheric pulsations. Geophysical Research Letters 29: 1197. https://doi.org/10.1029/ 2001GL014405.

123 Kepko, L., Viall, N.M., Antiochos, S.K. et al. (2016, May). Implications of L1 observations for slow solar wind formation by solar reconnection. Geophysical Research Letters 43: 4089–4097. https://doi.org/10.1002/2016GL068607.

124 Kilpua, E.K.J., Luhmann, J.G., Gosling, J. et al. (2009, May). Small solar wind transients and their connection to the large‐scale coronal structure. Solar Physics 256: 327–344. https://doi.org/10.1007/s11207‐009‐9366‐1.

125 Kiyani, K.H., Chapman, S.C., Sahraoui, F. et al. (2013, January). Enhanced magnetic compressibility and isotropic scale invariance at sub‐ion Larmor scales in solar wind turbulence. The Astrophysical Journal 763: 10. https://doi.org/10.1088/0004‐637X/763/1/10.

126 Kiyani, K. H., Osman, K. T., & Chapman, S. C. (2015). Dissipation and heating in solar wind turbulence: from the macro to the micro and back again. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373(2041), 20140155. doi: https://doi.org/10.1098/rsta.2014.01550.

127 Ko, Y.‐K., Muglach, K., Wang, Y.‐M., Young, P. R., & Lepri, S. T. (2014). Temporal evolution of solar wind ion composition and their source coronal holes during the declining phase of cycle 23. I. Low‐latitude extension of polar coronal holes. The Astrophysical Journal, 787(2), 121.

128 Kohl, J.L., Esser, R., Gardner, L.D. et al. (1995, December). The ultraviolet coronagraph spectrometer for the solar and heliospheric observatory. Solar Physics 162: 313–356. https://doi.org/10.1007/BF00733433.

129 Kohl, J.L., Noci, G., Antonucci, E. et al. (1998, July). UVCS/SOHO empirical determinations of anisotropic velocity distributions in the solar corona. The Astrophysical Journal 501: L127–L131. https://doi.org/10.1086/311434.

130 Kohl, J.L., Noci, G., Antonucci, E. et al. (1997, October). First results from the SOHO ultraviolet coronagraph spectrometer. Solar Physics 175: 613–644. https://doi.org/10.1023/A:1004903206467.

131 Lacombe, C., Alexandrova, O., and Matteini, L. (2017, October). Anisotropies of the magnetic field fluctuations at kinetic scales in the solar wind: cluster observations. The Astrophysical Journal 848: 45. https://doi.org/10.3847/1538‐4357/aa8c06.

132 Lacombe, C., Alexandrova, O., Matteini, L. et al. (2014, November). Whistler mode waves and the electron heat flux in the solar wind: Cluster observations. The Astrophysical Journal 796: 5. https://doi.org/10.1088/0004‐637X/796/1/5.

133 Laming, J.M. (2009, April). Non‐Wkb models of the first ionization potential effect: Implications for solar coronal heating and the coronal helium and neon abundances. The Astrophysical Journal 695: 954–969. https://doi.org/10.1088/0004‐637X/695/2/954.

134 Laming, J.M. (2015, September). The FIP and inverse FIP effects in solar and stellar coronae. Living Reviews in Solar Physics 12: 2. https://doi.org/10.1007/lrsp‐2015 ‐2.

135 Lavraud, B., Gosling, J.T., Rouillard, A.P. et al. (2009, May). Observation of a complex solar wind reconnection exhaust from spacecraft separated by over 1800 R E. Solar Physics 256: 379–392. https://doi.org/10.1007/s11207‐009‐9341‐x.

136 Lavraud, B., Ruffenach, A., Rouillard, A.P. et al. (2014, January). Geo‐effectiveness and radial dependence of magnetic cloud erosion by magnetic reconnection. Journal of Geophysical Research: Space Physics 119: 26–35. https://doi.org/10.1002/2013JA019154.

137 Lazar, M., Yoon, P.H., López, R.A., and Moya, P.S. (2018, January). Electromagnetic electron cyclotron instability in the solar wind. Journal of Geophysical Research: Space Physics 123: 6–19. https://doi.org/10.1002/2017JA024759.

138 Leamon, R.J., Smith, C.W., Ness, N.F. et al. (1998, March). Observational constraints on the dynamics of the interplanetary magnetic field dissipation range. Journal of Geophysical Research Atmospheres 103: 4775. https://doi.org/10.1029/97JA03394.

139 Lee, M.A. (2000, May). An analytical theory of the morphology, flows, and shock compressions at corotating interaction regions in the solar wind. Journal of Geophysical Research 105: 10491–10500. https://doi.org/10.1029/1999JA000327.

140 Leubner, M.P. and Vörös, Z. (2005, January). A nonextensive entropy approach to solar wind intermittency. The Astrophysical Journal 618: 547–555. https://doi.org/10.1086/425893.

141 Lin, R.P. (1974, June). Non‐relativistic solar electrons. Space Science Reviews 16: 189–256. https://doi.org/10.1007/ BF00240886.

142 Lin, R.P. (1998, July). WIND observations of suprathermal electrons in the interplanetary medium. Space Science Reviews 86: 61–78. https://doi.org/10.1023/A:1005048428480.

143 Linker, J.A., Lionello, R., Mikić, Z. et al. (2011, April). The evolution of open magnetic flux driven by photospheric dynamics. The Astrophysical Journal 731: 110. https://doi.org/10.1088/0004‐637X/731/2/110.

144 Lion, S., Alexandrova, O., and Zaslavsky, A. (2016, June). Coherent events and spectral shape at ion kinetic scales in the fast solar wind turbulence. The Astrophysical Journal 824: 47. https://doi.org/10.3847/0004‐637X/824/1/47.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Space Physics and Aeronomy, Solar Physics and Solar Wind»

Представляем Вашему вниманию похожие книги на «Space Physics and Aeronomy, Solar Physics and Solar Wind» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Space Physics and Aeronomy, Solar Physics and Solar Wind»

Обсуждение, отзывы о книге «Space Physics and Aeronomy, Solar Physics and Solar Wind» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x