Space Physics and Aeronomy, Solar Physics and Solar Wind

Здесь есть возможность читать онлайн «Space Physics and Aeronomy, Solar Physics and Solar Wind» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Space Physics and Aeronomy, Solar Physics and Solar Wind: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Space Physics and Aeronomy, Solar Physics and Solar Wind»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

A comprehensive view of our Sun at the start of a new era in solar and heliospheric physics Humans have been observing and studying our Sun for centuries, yet much is still unknown about the processes that drive its behavior. Thanks to a new generation of space missions and ground telescopes, we are poised to dramatically increase our understanding of the Sun and its environment.
Solar Physics and Solar Wind Volume highlights include:
Explanations for processes in the solar interior New insights on the solar wind The challenges of measuring the Sun's magnetic field and its radiative output Description of solar atmospheric phenomena such as spicules and jets New developments in understanding flares and coronal mass ejections Ongoing research into how the solar corona is heated The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.

Space Physics and Aeronomy, Solar Physics and Solar Wind — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Space Physics and Aeronomy, Solar Physics and Solar Wind», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

5 Alexandrova, O., Chen, C.H.K., Sorriso‐Valvo, L. et al. (2013, October). Solar wind turbulence and the role of ion instabilities. Space Science Reviews 178: 101–139. https://doi.org/10.1007/s11214‐013‐0004‐8.

6 Alexandrova, O., Lacombe, C., Mangeney, A. et al. (2012, December). Solar wind turbulent spectrum at plasma kinetic scales. The Astrophysical Journal 760: 121. https://doi.org/10.1088/0004‐637X/760/2/121.

7 Alexandrova, O., Saur, J., Lacombe, C. et al. (2009, October). Universality of solar‐wind turbulent spectrum from MHD to electron scales. Physical Review Letters 103 (16): 165003. https://doi.org/10.1103/PhysRevLett.103.165003.

8 Antiochos, S.K., DeVore, C.R., Karpen, J.T., and Mikić, Z. (2007, December). Structure and dynamics of the sun’s open magnetic field. The Astrophysical Journal 671: 936–946. https://doi.org/10.1086/522489.

9 Antiochos, S.K., Mikić, Z., Titov, V.S. et al. (2011, April). A model for the sources of the slow solar wind. The Astrophysical Journal 731: 112. https://doi.org/10.1088/0004‐637X/731/2/112.

10 Antonucci, E., Andretta, V., Cesare, S., Ciaravella, A., Doschek, G., Fineschi, S., et al. (2017, November). METIS, the Multi Element Telescope for Imaging and Spectroscopy: an instrument proposed for the solar orbiter mission. In Society of photo‐optical instrumentation engineers (spie) conference series (Vol. 10566, p. 105660L). doi: https://doi.org/10.1117/12.2308225.

11 Antonucci, E., Dodero, M.A., and Giordano, S. (2000, November). Fast solar wind velocity in a polar coronal hole during solar minimum. Solar Physics 197: 115–134. https://doi.org/10.1023/A:1026568912809.

12 Bavassano, B., Dobrowolny, M., Fanfoni, G. et al. (1982, June). Statistical properties of MHD fluctuations associated with high‐speed streams from Helios‐2 observations. Solar Physics 78: 373–384. https://doi.org/10.1007/BF00151617.

13 Bavassano, B., Dobrowolny, M., Mariani, F., and Ness, N.F. (1982, May). Radial evolution of power spectra of interplanetary Alfvenic turbulence. Journal of Geophysical Research 87: 3617–3622.

14 Bavassano, B., Pietropaolo, E., & Bruno, R. (2004, February). Compressive fluctuations in high‐latitude solar wind. Annales Geophysicae, 22, 689–696. doi: 10 .5194/angeo‐22‐689‐2004

15 Belcher, J.W. and Davis, L. Jr. (1971). Large‐amplitude waves in the interplanetary medium, 2. Journal of Geophysical Research Atmospheres 76: 3534–3563.

16 Bemporad, A. (2017, September). Exploring the inner acceleration region of solar wind: A study based on coronagraphic UV and visible light data. The Astrophysical Journal 846: 86. https://doi.org/10.3847/1538‐4357/aa7de4.

17 Biermann, L. (1951). Kometenschweife und solare Korpuskularstrahlung. Zeitschrift für Astrophysik 29: 274.

18 Birkeland, K. (1908). The Norwegian aurora polaris expedition, 1902–1903, Vol. I, Section 1, H Aschehoug, Oslo.

19 Bø, I.M.T., Esser, R., and Lie‐Svendsen, Ø. (2013, May). Effect of Coulomb collisions on the gravitational settling of low and high first ionization potential elements. The Astrophysical Journal 769: 60. https://doi.org/10.1088/0004‐637X/769/1/60.

20 Borovsky, J.E. (2008, August). Flux tube texture of the solar wind: Strands of the magnetic carpet at 1 AU? Journal of Geophysical Research: Space Physics 113: A08110. https://doi.org/10.1029/2007JA012684.

21 Borovsky, J.E. (2010, September). On the variations of the solar wind magnetic field about the Parker spiral direction. Journal of Geophysical Research: Space Physics 115: A09101. https://doi.org/10.1029/2009JA015040.

22 Borovsky, J. E. (2012, June). Looking for evidence of mixing in the solar wind from 0.31 to 0.98 AU. Journal of Geophysical Research: Space Physics, 117, A06107. doi: 10.1029/2012JA017525.

23 Borovsky, J.E. (2016, June). The plasma structure of coronal hole solar wind: Origins and evolution. Journal of Geophysical Research: Space Physics 121: 5055–5087. https://doi.org/10.1002/2016JA022686.

24 Borovsky, J.E. and Denton, M.H. (2016, July). The trailing edges of high‐speed streams at 1 AU. Journal of Geophysical Research: Space Physics 121: 6107–6140. https://doi.org/10.1002/2016JA022863.

25 Bruno, R. and Bavassano, B. (1997, September). On the winding of the IMF spiral for slow and fast wind within the inner heliosphere. Geophysical Research Letters 24: 2267. https://doi.org/10.1029/ 97GL02183.

26 Bruno, R., & Carbone, V. (2013, May). The solar wind as a turbulence laboratory. Living Reviews in Solar Physics, 10, 2. doi: 10.12942/lrsp‐2013‐2.

27 Bruno, R., Carbone, V., Veltri, P. et al. (2001, October). Identifying intermittency events in the solar wind. Planetary and Space Science 49: 1201–1210. https://doi.org/10.1016/S0032‐0633(01)00061‐7.

28 Burlaga, L.F. (1988, July). Magnetic clouds and force‐free fields with constant alpha. Journal of Geophysical Research: Space Physics 93: 7217–7224. https://doi.org/10.1029/JA093iA07p07217.

29 Burlaga, L.F. and Barouch, E. (1976, January). Interplanetary stream magnetism – Kinematic effects. The Astrophysical Journal 203: 257–267. https://doi.org/10.1086/154074.

30 Burlaga, L.F., Lepping, R.P., Behannon, K.W. et al. (1982, June). Large‐scale variations of the interplanetary magnetic field – Voyager 1 and 2 observations between 1 and 5 AU. Journal of Geophysical Research: Space Physics 87: 4345–4353. https://doi.org/10.1029/JA087iA06p04345.

31 Burlaga, L.F., McDonald, F.B., and Ness, N.F. (1993, Jan). Cosmic ray modulation and the distant heliospheric magnetic field: Voyager 1 and 2 observations from 1986 to 1989. Journal of Geophysical Research: Space Physics 98 (A1): 1–12. https://doi.org/10.1029/92JA01979.

32 Burlaga, L.F. and Ness, N.F. (1993, October). Large‐scale distant heliospheric magnetic field: Voyager 1 and 2 observations from 1986 through 1989. Journal of Geophysical Research: Space Physics 98: 17451–17460. https://doi.org/10.1029/93JA01475.

33 Burlaga, L.F., Ness, N.F., and McDonald, F.B. (1995, August). Magnetic fields and cosmic rays in the distant heliosphere at solar maximum: Voyager 2 observations near 32 AU during 1990. Journal of Geophysical Research: Space Physics 100: 14763–14772. https://doi.org/10.1029/95JA01557.

34 Burlaga, L.F. and Ogilvie, K.W. (1970, November). Magnetic and thermal pressures in the solar wind. Solar Physics 15: 61–71. https://doi.org/10.1007/BF00149472.

35 Burton, M.E., Neugebauer, M., Crooker, N.U. et al. (1999, May). Identification of trailing edge solar wind stream interfaces: A comparison of Ulysses plasma and composition measurements. Journal of Geophysical Research: Space Physics 104: 9925–9932. https://doi.org/10.1029/JA104iA05p09925.

36 Cartwright, M.L. and Moldwin, M.B. (2008, September). Comparison of small‐scale flux rope magnetic properties to large‐scale magnetic clouds: Evidence for reconnection across the HCS? Journal of Geophysical Research: Space Physics 113: A09105. https://doi.org/10.1029/2008JA013389.

37 Cartwright, M.L. and Moldwin, M.B. (2010a, August). Heliospheric evolution of solar wind small‐scale magnetic flux ropes. Journal of Geophysical Research: Space Physics 115: A08102. https://doi.org/10.1029/2009JA014271.

38 Cartwright, M.L. and Moldwin, M.B. (2010b, August). Heliospheric evolution of solar wind small‐scale magnetic flux ropes. Journal of Geophysical Research: Space Physics 115: A08102. https://doi.org/10.1029/2009JA014271.

39 Cerri, S.S., Servidio, S., and Califano, F. (2017, September). Kinetic cascade in solar‐wind turbulence: 3D3V Hybrid‐kinetic simulations with electron inertia. The Astrophysical Journal 846: L18. https://doi.org/10.3847/2041‐8213/aa87b0.

40 Chalov, S.V., Fahr, H.J., and Izmodenov, V. (1997, April). Spectra of energized pick‐up ions upstream of the two‐dimensional heliospheric termination shock. II. Acceleration by Alfvenic and by large‐scale solar wind turbulences. Astronomy and Astrophysics 320: 659–671.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Space Physics and Aeronomy, Solar Physics and Solar Wind»

Представляем Вашему вниманию похожие книги на «Space Physics and Aeronomy, Solar Physics and Solar Wind» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Space Physics and Aeronomy, Solar Physics and Solar Wind»

Обсуждение, отзывы о книге «Space Physics and Aeronomy, Solar Physics and Solar Wind» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x