Rai, K., Devi, M.S., and Guleria, A. (2016). Decision tree based algorithm for intrusion detection. International Journal of Advanced Networking and Applications , 7(4), 2828.
Rawat, S. (2005). Efficient data mining algorithms for intrusion detection. Proceedings of the 4th Conference on Engineering of Intelligent Systems (EIS 2004) . EIS, Madeira.
Robertson, W., Maggi, F., Kruegel, C., and Vigna, G. (2010). Effective anomaly detection with scarce training data. Proceedings of the Network and Distributed System Security Symposium , NDSS, San Diego.
Roesch, M. (1999). Snort: Lightweight intrusion detection for networks. Lisa , 99(1), 229–238.
Rokach, L. (2010). Ensemble-based classifiers. Artificial Intelligence Review , 33(1/2), 1–39.
Sabhnani, M. and Serpen, G. (2003). Application of machine learning algorithms to KDD intrusion detection dataset within misuse detection context. International Conference on Machine Learning; Models, Technologies and Applications . MLMTA, Las Vegas.
Sahu, S. and Mehtre, B.M. (2015). Network intrusion detection system using J48 Decision Tree. International Conference on Advances in Computing, Communications and Informatics (ICACCI) . IEEE, Kochi.
Sai Satyanarayana Reddy, S., Chatterjee, P., and Mamatha, C. (2019). Intrusion detection in wireless network using fuzzy logic implemented with genetic algorithm. In Computing and Network Sustainability , Peng, S.-L, Dey, N., and Bundele, M. (eds). Springer, Berlin, 425–432.
Scharre, P. (2015). Counter-swarm: A guide to defeating robotic swarms [Online]. Available at: https://warontherocks.com/2015/03/counter-swarm-a-guide-todefeating-robotic-swarms/.
Schneier, B. (2008). The psychology of security . International Conference on Cryptology in Africa. AFRICACRYPT, Casablanca.
Shanmugavadivu, R. and Nagarajan, N. (2011). Network intrusion detection system using fuzzy logic. Indian Journal of Computer Science and Engineering , 2(1), 101–111.
Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I. and Fergus, R. (2013). Intriguing properties of neural networks [Online]. Available at: https://arxiv.org/abs/1312.6199.
Tekerek, A. and Bay, O.F. (2019). Design and implementation of an artificial intelligence-based web application firewall model. Neural Network World , 189, 206.
Teng, H.S. and Chen, K. (1990). Adaptive real-time anomaly detection using inductively generated sequential patterns. Proceedings of the 1990 IEEE Computer Society Symposium on Research in Security and Privacy . IEEE, Oakland.
Turner, C., Jeremiah, R., Richards, D., and Joseph, A. (2016). A rule status monitoring algorithm for rule-based intrusion detection and prevention systems. Procedia Computer Science , 95, 361–368.
Valentín, K. and Malý, M. (2014). Network firewall using artificial neural networks. Computing and Informatics , 32(6), 1312–1327.
Vapnik, V. (1998). Statistical Learning Theory . John Wiley and Sons, Hoboken.
Veiga, A.P. (2018). Applications of artificial intelligence to network security [Online]. Available at: https://arxiv.org/abs/1803.09992.
Vinayakumar, R., Soman, K.P. and Poornachandran, P. (2017). Applying convolutional neural network for network intrusion detection. 6th International Conference on Advances in Computing, Communications and Informatics (ICACCI) . Manipal University, Karnataka.
Witten, I.H. and Frank, E. (2016). Data Mining: Practical Machine Learning Tools and Techniques . Morgan Kaufmann, Burlington.
Yang, Y., McLaughlin, K., Littler, T., Sezer, S. and Wang, H.F. (2013). Rule-based intrusion detection system for SCADA networks. 2nd IET Renewable Power Generation Conference (RPG 2013) . RPG, Beijing.
Zainal, A., Maarof, M.A. and Shamsuddin, S.M. (2009). Ensemble classifiers for network intrusion detection system. Journal of Information Assurance and Security , 4(3), 217–225.
Zegeye, W.K., Moazzami, F. and Dean, R. (2018). Hidden Markov Model (HMM) based Intrusion Detection System (IDS). International Telemetering Conference Proceedings , 5–8 November 2018, Glendale, Arizona.
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.