243 243 Nugent, J.H.A., Muhiuddin, I.P., and Evans, M.C.W. (2002). Biochemistry 41: 4117–4126.
244 244 Koulougliotis, D., Shen, J.‐R., Ioannidis, N., and Petrouleas, V. (2003). Biochemistry 42: 3045–3053.
245 245 Koulougliotis, D., Teutloff, C., Sanakis, Y. et al. (2004). Phys. Chem. Chem. Phys. 6: 4859–4863.
246 246 Sioros, G., Koulougliotis, D., Karapanagos, G., and Petrouleas, V. (2007). Biochemistry 46: 210–217.
247 247 Pal, R., Negre, C.F.A., Vogt, L. et al. (2013). Biochemistry 52: 7703–7706.
248 248 Lohmiller, T., Krewald, V., Sedoud, A. et al. (2017). J. Am. Chem. Soc. 139: 14412–14424.
249 249 Saito, K., William Rutherford, A., and Ishikita, H. (2015). Nat. Commun. 6: 8488.
250 250 Bovi, D., Narzi, D., and Guidoni, L. (2013). Angew. Chem. Int. Ed. 52: 11744–11749.
251 251 Isobe, H., Shoji, M., Yamanaka, S. et al. (2012). Dalton Trans. 41: 13727–13740.
252 252 Vinyard, D.J., Khan, S., Askerka, M. et al. (2017). J. Phys. Chem. B 121: 1020–1025.
253 253 Corry, T.A. and O'Malley, P.J. (2019). J. Phys. Chem. Lett. 10: 5226–5230.
254 254 Pushkar, Y., Ravari, A.K., Jensen, S.C., and Palenik, M. (2019). J. Phys. Chem. Lett. 10: 5284–5291.
255 255 Pantazis, D.A. (2019). Inorganics 7: 55.
256 256 Narzi, D., Bovi, D., and Guidoni, L. (2014). Proc. Natl. Acad. Sci. U.S.A. 111: 8723–8728.
257 257 Retegan, M., Cox, N., Lubitz, W. et al. (2014). Phys. Chem. Chem. Phys. 16: 11901–11910.
258 258 Ishikita, H., Saenger, W., Loll, B. et al. (2006). Biochemistry 45: 2063–2071.
259 259 Debus, R.J. (2014). Biochemistry 53: 2941–2955.
260 260 Dilbeck, P.L., Hwang, H.J., Zaharieva, I. et al. (2012). Biochemistry 51: 1079–1091.
261 261 Gupta, R., Taguchi, T., Lassalle‐Kaiser, B. et al. (2015). Proc. Natl. Acad. Sci. U.S.A. 112: 5319–5324.
262 262 Boussac, A., Sugiura, M., Kirilovsky, D., and Rutherford, A.W. (2005). Plant Cell Physiol. 46: 837–842.
263 263 Su, J.‐H., Havelius, K.G.V., Ho, F.M. et al. (2007). Biochemistry 46: 10703–10712.
264 264 Ioannidis, N., Nugent, J.H.A., and Petrouleas, V. (2002). Biochemistry 41: 9589–9600.
265 265 Rappaport, F., Ishida, N., Sugiura, M., and Boussac, A. (2011). Energy Environ. Sci. 4: 2520–2524.
266 266 Capone, M., Narzi, D., Bovi, D., and Guidoni, L. (2016). J. Phys. Chem. Lett. 7: 592–596.
267 267 Pérez Navarro, M., Ames, W.M., Nilsson, H. et al. (2013). Proc. Natl. Acad. Sci. U.S.A. 110: 15561–15566.
268 268 Oyala, P.H., Stich, T.A., Debus, R.J., and Britt, R.D. (2015). J. Am. Chem. Soc. 137: 8829–8837.
269 269 Askerka, M., Vinyard, D.J., Brudvig, G.W., and Batista, V.S. (2015). Biochemistry 54: 5783–5786.
270 270 Guo, Y., He, L.‐L., Zhao, D.‐X. et al. (2016). Phys. Chem. Chem. Phys. 18: 31551–31565.
271 271 Capone, M., Bovi, D., Narzi, D., and Guidoni, L. (2015). Biochemistry 54: 6439–6442.
272 272 Shoji, M., Isobe, H., and Yamaguchi, K. (2015). Chem. Phys. Lett. 636: 172–179.
273 273 Suga, M., Akita, F., Yamashita, K. et al. (2019). Science 366: 334.
274 274 Pushkar, Y., Davis, K.M., and Palenik, M.C. (2018). J. Phys. Chem. Lett. 9: 3525–3531.
275 275 Corry, T.A. and O'Malley, P.J. (2018). J. Phys. Chem. Lett. 9: 6269–6274.
276 276 Isobe, H., Shoji, M., Shen, J.‐R., and Yamaguchi, K. (2016). Inorg. Chem. 55: 502–511.
277 277 Isobe, H., Shoji, M., Suzuki, T. et al. (2019). Theory Comput. 15: 2375–2391.
278 278 Hillier, W. and Wydrzynski, T. (2004). Phys. Chem. Chem. Phys. 6: 4882–4889.
279 279 Hillier, W. and Wydrzynski, T. (2008). Coord.Chem. Rev. 252: 306–317.
280 280 Cox, N. and Messinger, J. (2013). Biochim. Biophys. Acta, Bioenerg. 1827: 1020–1030.
281 281 Siegbahn, P.E.M. (2008). Chem. Eur. J. 14: 8290–8302.
282 282 Siegbahn, P.E.M. (2009). Acc. Chem. Res. 42: 1871–1880.
283 283 Siegbahn, P.E.M. (2011). J. Photochem. Photobiol., B 104: 94–99.
284 284 Siegbahn, P.E.M. (2012). Phys. Chem. Chem. Phys. 14: 4849–4856.
285 285 Siegbahn, P.E.M. (2013). Biochim. Biophys. Acta, Bioenerg. 1827: 1003–1019.
286 286 Siegbahn, P.E.M. (2014). Phys. Chem. Chem. Phys. 16: 11893–11900.
287 287 Li, X. and Siegbahn, P.E.M. (2015). Phys. Chem. Chem. Phys. 17: 12168–12174.
288 288 Guo, Y., Li, H., He, L.‐L. et al. (2017). Phys. Chem. Chem. Phys. 19: 13909–13923.
289 289 Krewald, V., Neese, F., and Pantazis, D.A. (2019). J. Inorg. Biochem. 199: 110797.
290 290 Shoji, M., Isobe, H., Shigeta, Y. et al. (2018). Chem. Phys. Lett. 698: 138–146.
291 291 Siegbahn, P.E.M. and Crabtree, R.H. (1999). J. Am. Chem. Soc. 121: 117–127.
292 292 K. Yamaguchi, Y. Takahara, T. Fueno, in Applied Quantum Chemistry (Eds.: V. H. Smith Jr., H. F. Scheafer III, K. Morokuma), D. Reidel, Boston, MA, 1986, pp. 155‐184.
293 293 Lassalle‐Kaiser, B., Hureau, C., Pantazis, D.A. et al. (2010). Energy Environ. Sci. 3: 924–938.
294 294 Krishtalik, L.I. (1986). Biochim. Biophys. Acta, Bioenerg. 849: 162–171.
295 295 Krishtalik, L.I. (1990). Bioelectrochem. Bioenerg. 23: 249–263.
296 296 Zhang, B. and Sun, L. (2018). Dalton Trans. 47: 14381–14387.
297 297 Najafpour, M.M., Heidari, S., Balaghi, S.E. et al. (2017). Biochim. Biophys. Acta, Bioenerg. 1858: 156–174.
298 298 Kawashima, K., Takaoka, T., Kimura, H. et al. (2018). Nat. Commun. 9: 1247.
299 299 Shoji, M., Isobe, H., Shigeta, Y. et al. (2018). J. Phys. Chem. B 122: 6491–6502.
300 300 Shoji, M., Isobe, H., and Yamaguchi, K. (2019). Chem. Phys. Lett. 714: 219–226.
301 301 Yamaguchi, K., Shoji, M., Isobe, H. et al. (2018). Mol. Phys. 116: 717–745.
302 302 Paul, S., Neese, F., and Pantazis, D.A. (2017). Green Chem. 19: 2309–2325.
303 303 Meelich, K., Zaleski, C.M., and Pecoraro, V.L. (2008). Philos. Trans. R. Soc. B 363: 1271–1281.
304 304 Mukhopadhyay, S., Mandal, S.K., Bhaduri, S., and Armstrong, W.H. (2004). Chem. Rev. 104: 3981–4026.
305 305 Mishra, A., Wernsdorfer, W., Abboud, K.A., and Christou, G. (2005). Chem. Commun.: 54–56.
306 306 Koumousi, E.S., Mukherjee, S., Beavers, C.M. et al. (2011). Chem. Commun. 47: 11128–11130.
307 307 Kanady, J.S., Tsui, E.Y., Day, M.W., and Agapie, T. (2011). Science 333: 733–736.
308 308 Mukherjee, S., Stull, J.A., Yano, J. et al. (2012). Proc. Natl. Acad. Sci. U.S.A. 109: 2257–2262.
309 309 Tsui, E.Y., Kanady, J.S., and Agapie, T. (2013). Inorg. Chem. 52: 13833–13848.
310 310 Kanady, J.S., Lin, P.‐H., Carsch, K.M. et al. (2014). J. Am. Chem. Soc. 136: 14373–14376.
311 311 Han, Z., Horak, K.T., Lee, H.B., and Agapie, T. (2017). J. Am. Chem. Soc. 139: 9108–9111.
312 312 Lee, H.B., Tsui, E.Y., and Agapie, T. (2017). Chem. Commun. 53: 6832–6835.
313 313 Lee, H.B., Shiau, A.A., Oyala, P.H. et al. (2018). J. Am. Chem. Soc. 140: 17175–17187.
314 314 Zhang, C., Chen, C., Dong, H. et al. (2015). Science 348: 690–693.
315 315 Chen, C., Li, Y., Zhao, G. et al. (2017). ChemSusChem 10: 4403–4408.
316 316 Chen, C., Chen, Y., Yao, R. et al. (2019). Angew. Chem. Int. Ed. 58: 3939–3942.
317 317 Gerey, B., Gouré, E., Fortage, J. et al. (2016). Coord. Chem. Rev. 319: 1–24.
318 318 Li, Y., Yao, R., Chen, Y. et al. (2020). Catalysts 10: 185.
319 319 Tsui, E.Y. and Agapie, T. (2013). Proc. Natl. Acad. Sci. U.S.A. 110: 10084–10088.
320 320 Tsui, E.Y., Tran, R., Yano, J., and Agapie, T. (2013). Nat. Chem. 5: 293–299.
321 321 Krewald, V., Neese, F., and Pantazis, D.A. (2016). Phys. Chem. Chem. Phys. 18: 10739–10750.
322 322 Krewald, V. and Pantazis, D.A. (2016). Dalton Trans. 45: 18900–18908.
323 323 Romain, S., Rich, J., Sens, C. et al. (2011). Inorg. Chem. 50: 8427–8436.
Читать дальше