83 83 Kuroda, H., Kodama, N., Sun, X.‐Y. et al. (2014). Plant Cell Physiol. 55: 1266–1275.
84 84 Kawashima, K., Saito, K., and Ishikita, H. (2018). Biochemistry 57: 4997–5004.
85 85 Chrysina, M., de Mendonça Silva, J.C., Zahariou, G. et al. (2019). J. Phys. Chem. B 123: 3068–3078.
86 86 Chrysina, M., Zahariou, G., Sanakis, Y. et al. (2011). J. Photochem. Photobiol., B 104: 72–79.
87 87 Vermaas, W.F.J., Renger, G., and Dohnt, G. (1984). Biochim. Biophys. Acta, Bioenerg. 764: 194–202.
88 88 Messinger, J. and Renger, G. (1993). Biochemistry 32: 9379–9386.
89 89 Faller, P., Debus, R.J., Brettel, K. et al. (2001). Proc. Natl. Acad. Sci. U.S.A. 98: 14368–14373.
90 90 Rutherford, A.W., Boussac, A., and Faller, P. (2004). Biochim. Biophys. Acta, Bioenerg. 1655: 222–230.
91 91 Diner, B.A., Bautista, J.A., Nixon, P.J. et al. (2004). Phys. Chem. Chem. Phys. 6: 4844–4850.
92 92 Jeans, C., Schilstra, M.J., Ray, N. et al. (2002). Biochemistry 41: 15754–15761.
93 93 Boussac, A. and Etienne, A.L. (1982). Biochem. Biophys. Res. Commun. 109: 1200–1205.
94 94 Styring, S., Sjöholm, J., and Mamedov, F. (2012). Biochim. Biophys. Acta, Bioenerg. 1817: 76–87.
95 95 Sjöholm, J., Mamedov, F., and Styring, S. (2014). Biochemistry 53: 5721–5723.
96 96 Ahmadova, N., Ho, F.M., Styring, S., and Mamedov, F. (2017). Biochim. Biophys. Acta, Bioenerg. 1858: 407–417.
97 97 Saito, K., Rutherford, A.W., and Ishikita, H. (2013). Proc. Natl. Acad. Sci. U.S.A. 110: 7690–7695.
98 98 Sirohiwal, A., Neese, F., and Pantazis, D.A. (2019). J. Am. Chem. Soc. 141: 3217–3231.
99 99 Romero, E., Novoderezhkin, V.I., and van Grondelle, R. (2017). Nature 543: 355–365.
100 100 Krieger‐Liszkay, A., Fufezan, C., and Trebst, A. (2008). Photosynth. Res. 98: 551–564.
101 101 van Wijk, K.J., Nilsson, L.O., and Styring, S. (1994). J. Biol. Chem. 269: 28382–28392.
102 102 Nixon, P.J., Michoux, F., Yu, J. et al. (2010). Ann. Bot. 106: 1–16.
103 103 Jarvi, S., Suorsa, M., and Aro, E.M. (2015). Biochim. Biophys. Acta 1847: 900–909.
104 104 Meyer, T.J. (1989). Acc. Chem. Res. 22: 163–170.
105 105 Wasielewski, M.R. (1992). Chem. Rev. 92: 435–461.
106 106 Wasielewski, M.R. (2009). Acc. Chem. Res. 42: 1910–1921.
107 107 Redmore, N.P., Rubtsov, I.V., and Therien, M.J. (2003). J. Am. Chem. Soc. 125: 8769–8778.
108 108 Hammarström, L. and Styring, S. (2011). Energy Environ. Sci. 4: 2379–2388.
109 109 Kodis, G., Liddell, P.A., Moore, A.L. et al. (2004). J. Phys. Org. Chem. 17: 724–734.
110 110 Liddell, P.A., Kuciauskas, D., Sumida, J.P. et al. (1997). J. Am. Chem. Soc. 119: 1400–1405.
111 111 Gust, D., Moore, T.A., and Moore, A.L. (2009). Acc. Chem. Res. 42: 1890–1898.
112 112 Gust, D., Moore, T.A., and Moore, A.L. (2012). Faraday Discuss. 155: 9–26.
113 113 Sun, L.C., Hammarström, L., Åkermark, B., and Styring, S. (2001). Chem. Soc. Rev. 30: 36–49.
114 114 Karlsson, E.A., Lee, B.‐L., Åkermark, T. et al. (2011). Angew. Chem. Int. Ed. 50: 11715–11718.
115 115 Kärkäs, M.D., Johnston, E.V., Verho, O., and Åkermark, B. (2014). Acc. Chem. Res. 47: 100–111.
116 116 Hammarström, L. (2015). Acc. Chem. Res. 48: 840–850.
117 117 Dasgupta, J., Ananyev, G.M., and Dismukes, G.C. (2008). Coord. Chem. Rev. 252: 347–360.
118 118 Petrouleas, V., Koulougliotis, D., and Ioannidis, N. (2005). Biochemistry 44: 6723–6728.
119 119 Havelius, K.G.V., Sjöholm, J., Ho, F. et al. (2010). Appl. Magn. Reson. 37: 151–176.
120 120 Ioannidis, N., Zahariou, G., and Petrouleas, V. (2006). Biochemistry 45: 6252–6259.
121 121 Zahariou, G., Chrysina, M., Petrouleas, V., and Ioannidis, N. (2014). FEBS Lett. 588: 1827–1831.
122 122 Zahariou, G. and Ioannidis, N. (2016). Photosynth. Res. 130: 417–426.
123 123 Havelius, K.G.V., Su, J.‐H., Han, G. et al. (2011). Biochim. Biophys. Acta, Bioenerg. 1807: 11–21.
124 124 Cox, N., Ho, F.M., Pewnim, N. et al. (2009). Biochim. Biophys. Acta, Bioenerg. 1787: 882–889.
125 125 Peloquin, J.M., Campbell, K.A., and Britt, R.D. (1998). J. Am. Chem. Soc. 120: 6840–6841.
126 126 Dau, H. and Haumann, M. (2007). Biochim. Biophys. Acta, Bioenerg. 1767: 472–483.
127 127 Klauss, A., Haumann, M., and Dau, H. (2012). Proc. Natl. Acad. Sci. U.S.A. 109: 16035–16040.
128 128 Klauss, A., Haumann, M., and Dau, H. (2015). J. Phys. Chem. B 119: 2677–2689.
129 129 Wieghardt, K. (1989). Angew. Chem. Int. Ed. Engl. 28: 1153–1172.
130 130 Yachandra, V.K., Sauer, K., and Klein, M.P. (1996). Chem. Rev. 96: 2927–2950.
131 131 Dismukes, G.C. and Siderer, Y. (1981). Proc. Natl. Acad. Sci. U.S.A. 78: 274–278.
132 132 Yachandra, V.K., DeRose, V.J., Latimer, M.J. et al. (1993). Science 260: 675–679.
133 133 Sauer, K., Yano, J., and Yachandra, V.K. (2005). Photosynth. Res. 85: 73–86.
134 134 Yano, J., Kern, J., Sauer, K. et al. (2006). Science 314: 821–825.
135 135 Yano, J., Kern, J., Pushkar, Y. et al. (2008). Philos. Trans. R. Soc. B 363: 1139–1147.
136 136 Dau, H., Liebisch, P., and Haumann, M. (2004). Phys. Chem. Chem. Phys. 6: 4781–4792.
137 137 Haumann, M., Müller, C., Liebisch, P. et al. (2005). Biochemistry 44: 1894–1908.
138 138 Dau, H., Grundmeier, A., Loja, P., and Haumann, M. (2008). Philos. Trans. R. Soc. B 363: 1237–1243.
139 139 Glöckner, C., Kern, J., Broser, M. et al. (2013). J. Biol. Chem. 288: 22607–22620.
140 140 Grundmeier, A. and Dau, H. (2012). Biochim. Biophys. Acta, Bioenerg. 1817: 88–105.
141 141 Yano, J. and Yachandra, V. (2014). Chem. Rev. 114: 4175–4205.
142 142 Grabolle, M., Haumann, M., Müller, C. et al. (2006). J. Biol. Chem. 281: 4580–4588.
143 143 Yano, J., Kern, J., Irrgang, K.‐D. et al. (2005). Proc. Natl. Acad. Sci. U.S.A. 102: 12047–12052.
144 144 Galstyan, A., Robertazzi, A., and Knapp, E.W. (2012). J. Am. Chem. Soc. 134: 7442–7449.
145 145 Luber, S., Rivalta, I., Umena, Y. et al. (2011). Biochemistry 50: 6308–6311.
146 146 Ames, W., Pantazis, D.A., Krewald, V. et al. (2011). J. Am. Chem. Soc. 133: 19743–19757.
147 147 Amin, M., Badawi, A., and Obayya, S.S. (2016). Sci. Rep. 6: 36492.
148 148 Amin, M., Askerka, M., Batista, V.S. et al. (2017). J. Phys. Chem. B 121: 9382–9388.
149 149 Shoji, M., Isobe, H., Yamanaka, S. et al. (2015). Chem. Phys. Lett. 623: 1–7.
150 150 Krewald, V., Retegan, M., Cox, N. et al. (2015). Chem. Sci. 6: 1676–1695.
151 151 Askerka, M., Vinyard, D.J., Wang, J. et al. (2015). Biochemistry 54: 1713–1716.
152 152 Rivalta, I., Amin, M., Luber, S. et al. (2011). Biochemistry 50: 6312–6315.
153 153 Vogt, L., Vinyard, D.J., Khan, S., and Brudvig, G.W. (2015). Curr. Opin. Chem. Biol. 25: 152–158.
154 154 Amin, M., Pokhrel, R., Brudvig, G.W. et al. (2016). J. Phys. Chem. B 120: 4243–4248.
155 155 Ghosh, I., Khan, S., Banerjee, G. et al. (2019). J. Phys. Chem. B.
156 156 Nakamura, S. and Noguchi, T. (2017). J. Am. Chem. Soc. 139: 9364–9375.
157 157 Lohmiller, T., Krewald, V., Pérez Navarro, M. et al. (2014). Phys. Chem. Chem. Phys. 16: 11877–11892.
158 158 Bondar, A.‐N. and Dau, H. (2012). Biochim. Biophys. Acta, Bioenerg. 1817: 1177–1190.
159 159 Gabdulkhakov, A., Guskov, A., Broser, M. et al. (2009). Structure 17: 1223–1234.
160 160 Linke, K. and Ho, F.M. (2014). Biochim. Biophys. Acta, Bioenerg. 1837: 14–32.
161 161 Ho, F.M. (2012). Molecular Solar Fuels (eds. T.J. Wydrzynski and W. Hillier), 208–248. Cambridge: The Royal Society of Chemistry.
162 162 Ho, F.M. and Styring, S. (2008). Biochim. Biophys. Acta, Bioenerg. 1777: 140–153.
163 163 Murray, J. and Barber, J. (2008). Photosynthesis. Energy from the Sun (eds. J. Allen, E. Gantt, J. Golbeck and B. Osmond), 467–470. Springer Netherlands.
Читать дальше