164 164 Vassiliev, S., Zaraiskaya, T., and Bruce, D. (2013). Biochim. Biophys. Acta, Bioenerg. 1827: 1148–1155.
165 165 Vassiliev, S., Comte, P., Mahboob, A., and Bruce, D. (2010). Biochemistry 49: 1873–1881.
166 166 Vassiliev, S., Zaraiskaya, T., and Bruce, D. (2012). Biochim. Biophys. Acta, Bioenerg. 1817: 1671–1678.
167 167 Debus, R.J. (2015). Biochim. Biophys. Acta, Bioenerg. 1847: 19–34.
168 168 Noguchi, T. (2015). Biochim. Biophys. Acta, Bioenerg. 1847: 35–45.
169 169 Retegan, M. and Pantazis, D.A. (2016). Chem. Sci. 7: 6463–6476.
170 170 Retegan, M. and Pantazis, D.A. (2017). J. Am. Chem. Soc. 139: 14340–14343.
171 171 Sakashita, N., Watanabe, H.C., Ikeda, T., and Ishikita, H. (2017). Photosynth. Res. 133: 75–85.
172 172 Sakashita, N., Watanabe, H.C., Ikeda, T. et al. (2017). Biochemistry 56: 3049–3057.
173 173 Kaur, D., Cai, X., Khaniya, U. et al. (2019). Inorganics: 7.
174 174 Haddy, A. (2007). Photosynth. Res. 92: 357–368.
175 175 Britt, R.D., Campbell, K.A., Peloquin, J.M. et al. (2004). Biochim. Biophys. Acta 1655: 158–171.
176 176 Peloquin, J.M., Campbell, K.A., Randall, D.W. et al. (2000). J. Am. Chem. Soc. 122: 10926–10942.
177 177 Lohmiller, T., Ames, W., Lubitz, W. et al. (2013). Appl. Magn. Reson. 44: 691–720.
178 178 Cox, N., Nalepa, A., Pandelia, M.‐E. et al. (2015). Methods in Enzymology, vol. 563 (eds. Z.Q. Peter and W. Kurt), 211–249. Academic Press.
179 179 Krewald, V., Retegan, M., Neese, F. et al. (2016). Inorg. Chem. 55: 488–501.
180 180 Möbius, K., Lubitz, W., Cox, N., and Savitsky, A. (2018). Magnetochemistry 4: 50.
181 181 Dau, H. and Haumann, M. (2008). Coord. Chem. Rev. 252: 273–295.
182 182 Zaharieva, I., Chernev, P., Berggren, G. et al. (2016). Biochemistry 55: 4197–4211.
183 183 Schuth, N., Zaharieva, I., Chernev, P. et al. (2018). Inorg. Chem. 57: 10424–10430.
184 184 Pantazis, D.A., Orio, M., Petrenko, T. et al. (2009). Chem. Eur. J. 15: 5108–5123.
185 185 Pantazis, D.A., Orio, M., Petrenko, T. et al. (2009). Phys. Chem. Chem. Phys. 11: 6788–6798.
186 186 Schinzel, S. and Kaupp, M. (2009). Can. J. Chem. 87: 1521–1539.
187 187 Neese, F., Ames, W., Christian, G. et al. (2010). Adv. Inorg. Chem. 62: 301–349.
188 188 Pantazis, D.A., Ames, W., Cox, N. et al. (2012). Angew. Chem. Int. Ed. 51: 9935–9940.
189 189 Retegan, M., Cox, N., Pantazis, D.A., and Neese, F. (2014). Inorg. Chem. 53: 11785–11793.
190 190 Beckwith, M.A., Ames, W., Vila, F.D. et al. (2015). J. Am. Chem. Soc. 137: 12815–12834.
191 191 Retegan, M., Krewald, V., Mamedov, F. et al. (2016). Chem. Sci. 7: 72–84.
192 192 Orio, M., Pantazis, D.A., and Neese, F. (2009). Photosynth. Res. 102: 443–453.
193 193 Schinzel, S., Schraut, J., Arbuznikov, A.V. et al. (2010). Chem. Eur. J. 16: 10424–10438.
194 194 Schraut, J., Arbuznikov, A.V., Schinzel, S., and Kaupp, M. (2011). ChemPhysChem 12: 3170–3179.
195 195 Orio, M., Pantazis, D.A., Petrenko, T., and Neese, F. (2009). Inorg. Chem. 48: 7251–7260.
196 196 Pantazis, D.A., Krewald, V., Orio, M., and Neese, F. (2010). Dalton Trans. 39: 4959–4967.
197 197 Baffert, C., Orio, M., Pantazis, D.A. et al. (2009). Inorg. Chem. 48: 10281–10288.
198 198 Krewald, V., Neese, F., and Pantazis, D.A. (2013). J. Am. Chem. Soc. 135: 5726–5739.
199 199 Krewald, V., Neese, F., and Pantazis, D.A. (2015). Isr. J. Chem. 55: 1219–1232.
200 200 Jaszewski, A.R., Petrie, S., Pace, R.J., and Stranger, R. (2011). Chem. Eur. J. 17: 5699–5713.
201 201 Pace, R.J., Jin, L., and Stranger, R. (2012). Dalton Trans. 41: 11145–11160.
202 202 Chen, H., Case, D.A., and Dismukes, G.C. (2018). J. Phys. Chem. B.
203 203 Chen, H., Dismukes, G.C., and Case, D.A. (2018). J. Phys. Chem. B 122: 8654–8664.
204 204 Terrett, R., Petrie, S., Stranger, R., and Pace, R.J. (2016). J. Inorg. Biochem. 162: 178–189.
205 205 Petrie, S., Stranger, R., and Pace, R.J. (2018). ChemPhysChem 19: 3296–3309.
206 206 Åhrling, K.A., Peterson, S., and Styring, S. (1997). Biochemistry 36: 13148–13152.
207 207 Messinger, J., Nugent, J.H.A., and Evans, M.C.W. (1997). Biochemistry 36: 11055–11060.
208 208 Messinger, J., Robblee, J.H., Yu, W.O. et al. (1997). J. Am. Chem. Soc. 119: 11349–11350.
209 209 Åhrling, K.A., Peterson, S., and Styring, S. (1998). Biochemistry 37: 8115–8120.
210 210 Boussac, A., Kuhl, H., Ghibaudi, E. et al. (1999). Biochemistry 38: 11942–11948.
211 211 Deák, Z., Peterson, S., Geijer, P. et al. (1999). Biochim. Biophys. Acta, Bioenerg. 1412: 240–249.
212 212 Koulougliotis, D., Hirsh, D.J., and Brudvig, G.W. (1992). J. Am. Chem. Soc. 114: 8322–8323.
213 213 Dexheimer, S.L. and Klein, M.P. (1992). J. Am. Chem. Soc. 114: 2821–2826.
214 214 Yamauchi, T., Mino, H., Matsukawa, T. et al. (1997). Biochemistry 36: 7520–7526.
215 215 Campbell, K.A., Peloquin, J.M., Pham, D.P. et al. (1998). J. Am. Chem. Soc. 120: 447–448.
216 216 Campbell, K.A., Gregor, W., Pham, D.P. et al. (1998). Biochemistry 37: 5039–5045.
217 217 Matsukawa, T., Kawamori, A., and Mino, H. (1999). Spectrochim. Acta, Part A 55: 895–901.
218 218 Casey, J.L. and Sauer, K. (1984). Biochim. Biophys. Acta, Bioenerg. 767: 21–28.
219 219 De Paula, J.C. and Brudvig, G.W. (1985). J. Am. Chem. Soc. 107: 2643–2648.
220 220 Zimmermann, J.L. and Rutherford, A.W. (1984). Biochim. Biophys. Acta, Bioenerg. 767: 160–167.
221 221 Zimmermann, J.L. and Rutherford, A.W. (1986). Biochemistry 25: 4609–4615.
222 222 Cole, J., Yachandra, V.K., Guiles, R.D. et al. (1987). Biochim. Biophys. Acta, Bioenerg. 890: 395–398.
223 223 Kim, D.H., Britt, R.D., Klein, M.P., and Sauer, K. (1990). J. Am. Chem. Soc. 112: 9389–9391.
224 224 Horner, O., Rivière, E., Blondin, G. et al. (1998). J. Am. Chem. Soc. 120: 7924–7928.
225 225 Boussac, A. and Rutherford, A.W. (2000). Biochim. Biophys. Acta, Bioenerg. 1457: 145–156.
226 226 Sanakis, Y., Sarrou, J., Zahariou, G., and Petrouleas, V. (2008). Photosynthesis: Energy from the Sun (eds. J.F. Allen, E. Gantt, J.H. Golbeck and B. Osmond), 479–482. Dordrecht: Springer.
227 227 Boussac, A., Sugiura, M., Rutherford, A.W., and Dorlet, P. (2009). J. Am. Chem. Soc. 131: 5050–5051.
228 228 Cox, N., Retegan, M., Neese, F. et al. (2014). Science 345: 804–808.
229 229 Peloquin, J.M. and Britt, R.D. (2001). Biochim. Biophys. Acta, Bioenerg. 1503: 96–111.
230 230 Kulik, L.V., Epel, B., Lubitz, W., and Messinger, J. (2007). J. Am. Chem. Soc. 129: 13421–13435.
231 231 Charlot, M.‐F., Boussac, A., and Blondin, G. (2005). Biochim. Biophys. Acta, Bioenerg. 1708: 120–132.
232 232 Kulik, L.V., Epel, B., Lubitz, W., and Messinger, J. (2005). J. Am. Chem. Soc. 127: 2392–2393.
233 233 Iuzzolino, L., Dittmer, J., Dörner, W. et al. (1998). Biochemistry 37: 17112–17119.
234 234 Dau, H., Iuzzolino, L., and Dittmer, J. (2001). Biochim. Biophys. Acta, Bioenerg. 1503: 24–39.
235 235 Dau, H., Liebisch, P., and Haumann, M. (2005). Phys. Scr. 2005: 844.
236 236 Cheah, M.H., Zhang, M., Shevela, D. et al. (2020). Proc. Natl. Acad. Sci. U.S.A. 117: 141–145.
237 237 Paul, S., Cox, N., and Pantazis, D.A. (2017). Inorg. Chem. 56: 3875–3888.
238 238 Nakamura, S. and Noguchi, T. (2016). Proc. Natl. Acad. Sci. U.S.A. 113: 12727–12732.
239 239 Kusunoki, M. (2011). Photochem. Photobiol. B 104: 100–110.
240 240 Shoji, M., Isobe, H., Tanaka, A. et al. (2018). ChemPhotoChem 2: 257–270.
241 241 Narzi, D., Mattioli, G., Bovi, D., and Guidoni, L. (2017). Chem. Eur. J. 23: 6969–6973.
242 242 Boussac, A., Rutherford, A.W., and Sugiura, M. (2015). Biochim. Biophys. Acta, Bioenerg. 1847: 576–586.
Читать дальше