1 1 Faunce, T.A., Lubitz, W., Rutherford, A.W. et al. (2013). Energy Environ. Sci. 6: 695–698.
2 2 Armaroli, N. and Balzani, V. (2016). Chem. Eur. J. 22: 32–57.
3 3 Lane, N. (2016). Oxygen: The Molecule that Made the World, 400. Oxford: Oxford University Press.
4 4 Blankenship, R.E. (2014). Molecular Mechanisms of Photosynthesis, 2e, 312. Chichester: Wiley.
5 5 Shevela, D. and Björn, L.O. (2017). Govindjee, Photosynthesis: Solar Energy for Life, 204. Singapore: World Scientific.
6 6 Krewald, V., Retegan, M., and Pantazis, D.A. (2016). Top. Curr. Chem. 371: 23–48.
7 7 Pantazis, D.A. (2018). ACS Catal. 8: 9477–9507.
8 8 Junge, W. (2019). Q. Rev. Biophys. 52: e1.
9 9 Wydrzynski, T.J. and Hillier, W. (2012). Molecular Solar Fuels, 553. Cambridge: The Royal Society of Chemistry.
10 10 Collings, A.F. and Critchley, C. (2005). Artificial Photosynthesis: From Basic Biology to Industrial Application, 313. Weinheim: Wiley‐VCH.
11 11 Cogdell, R.J., Gardiner, A.T., Yukihira, N., and Hashimoto, H. (2018). J. Photochem. Photobiol., A 353: 645–653.
12 12 El‐Khouly, M.E., El‐Mohsnawy, E., and Fukuzumi, S. (2017). J. Photochem. Photobiol., C 31: 36–83.
13 13 Nocera, D.G. (2017). Acc. Chem. Res. 50: 616–619.
14 14 Cox, N., Pantazis, D.A., Neese, F., and Lubitz, W. (2015). Interface Focus 5: 20150009.
15 15 Kim, D., Sakimoto, K.K., Hong, D., and Yang, P. (2015). Angew. Chem. Int. Ed. 54: 3259–3266.
16 16 Barber, J. and Tran, P.D. (2013). J. R. Soc. Interface 10: 20120984.
17 17 Tachibana, Y., Vayssieres, L., and Durrant, J.R. (2012). Nat. Photonics 6: 511–518.
18 18 Lubitz, W., Reijerse, E.J., and Messinger, J. (2008). Energy Environ. Sci. 1: 15–31.
19 19 Rappaport, F. and Diner, B.A. (2008). Coord. Chem. Rev. 252: 259–272.
20 20 Brotosudarmo, T.H.P., Prihastyanti, M.N.U., Gardiner, A.T. et al. (2014). Energy Procedia 47: 283–289.
21 21 Chen, M., Schliep, M., Willows, R.D. et al. (2010). Science 329: 1318.
22 22 Nürnberg, D.J., Morton, J., Santabarbara, S. et al. (2018). Science 360: 1210.
23 23 Green, B. and Parson, W.W. (2003). Light‐Harvesting Antennas in Photosynthesis, 516. Dordrecht: Springer.
24 24 Prince, S.M., Papiz, M.Z., Freer, A.A. et al. (1997). J. Mol. Biol. 268: 412–423.
25 25 David, L., Marx, A., and Adir, N. (2011). J. Mol. Biol. 405: 201–213.
26 26 Standfuss, J., Terwisscha van Scheltinga, A.C., Lamborghini, M., and Kühlbrandt, W. (2005). EMBO J. 24: 919–928.
27 27 Förster, T. (1948). Ann. Phys. 437: 55–75.
28 28 Redfield, A.G. (1965). Advances in Magnetic and Optical Resonance, vol. 1 (ed. J.S. Waugh), 1–32. Academic Press.
29 29 Panitchayangkoon, G., Hayes, D., Fransted, K.A. et al. (2010). Proc. Natl. Acad. Sci. U.S.A. 107: 12766.
30 30 Ishizaki, A. and Fleming, G.R. (2012). Annu. Rev. Condens. Matter Phys. 3: 333–361.
31 31 Fassioli, F., Dinshaw, R., Arpin, P.C., and Scholes, G.D. (2014). J. R. Soc. Interface 11: 20130901.
32 32 Straight, S.D., Kodis, G., Terazono, Y. et al. (2008). Nat. Nanotechnol. 3: 280–283.
33 33 Harriman, A. (2015). Chem. Commun. 51: 11745–11756.
34 34 Balzani, V., Credi, A., and Venturi, M. (2008). ChemSusChem 1: 26–58.
35 35 Newkome, G.R., Moorefield, C.N., and Vögtle, F. (2001). Dendrimers and Dendrons, 635. Weinheim: Wiley‐VCH.
36 36 Balzani, V., Ceroni, P., Maestri, M., and Vicinelli, V. (2003). Curr. Opin. Chem. Biol. 7: 657–665.
37 37 Balzani, V., Campagna, S., Denti, G. et al. (1998). Acc. Chem. Res. 31: 26–34.
38 38 McCusker, J.K. (2019). Science 363: 484.
39 39 Gust, D., Moore, T.A., and Moore, A.L. (2001). Acc. Chem. Res. 34: 40–48.
40 40 Holten, D., Bocian, D.F., and Lindsey, J.S. (2002). Acc. Chem. Res. 35: 57–69.
41 41 Choi, M.‐S., Yamazaki, T., Yamazaki, I., and Aida, T. (2004). Angew. Chem. Int. Ed. 43: 150–158.
42 42 Adronov, A., Gilat, S.L., Fréchet, J.M.J. et al. (2000). J. Am. Chem. Soc. 122: 1175–1185.
43 43 Ching Mak, C., Pomeranc, D., Sanders, J.K.M. et al. (1999). Chem. Commun.: 1083–1084.
44 44 Cotlet, M., Vosch, T., Habuchi, S. et al. (2005). J. Am. Chem. Soc. 127: 9760–9768.
45 45 Balzani, V., Bergamini, G., Ceroni, P., and Vögtle, F. (2007). Coord. Chem. Rev. 251: 525–535.
46 46 Hahn, U., Gorka, M., Vögtle, F. et al. (2002). Angew. Chem. Int. Ed. 41: 3595–3598.
47 47 Zouni, A., Witt, H.T., Kern, J. et al. (2001). Nature 409: 739–743.
48 48 Neutze, R., Wouts, R., van der Spoel, D. et al. (2000). Nature 406: 752–757.
49 49 Chapman, H.N., Fromme, P., Barty, A. et al. (2011). Nature 470: 73–77.
50 50 Kamiya, N. and Shen, J.‐R. (2003). Proc. Natl. Acad. Sci. U.S.A. 100: 98–103.
51 51 Ferreira, K.N., Iverson, T.M., Maghlaoui, K. et al. (2004). Science 303: 1831–1838.
52 52 Biesiadka, J., Loll, B., Kern, J. et al. (2004). Phys. Chem. Chem. Phys. 6: 4733–4736.
53 53 Loll, B., Kern, J., Saenger, W. et al. (2005). Nature 438: 1040–1044.
54 54 Guskov, A., Kern, J., Gabdulkhakov, A. et al. (2009). Nat. Struct. Mol. Biol. 16: 334–342.
55 55 Umena, Y., Kawakami, K., Shen, J.‐R., and Kamiya, N. (2011). Nature 473: 55–60.
56 56 Tanaka, A., Fukushima, Y., and Kamiya, N. (2017). J. Am. Chem. Soc. 139: 1718–1721.
57 57 Suga, M., Akita, F., Hirata, K. et al. (2015). Nature 517: 99–103.
58 58 Suga, M., Akita, F., Sugahara, M. et al. (2017). Nature 543: 131–135.
59 59 Kern, J., Alonso‐Mori, R., Hellmich, J. et al. (2012). Proc. Natl. Acad. Sci. U.S.A. 109: 9721–9726.
60 60 Kupitz, C., Basu, S., Grotjohann, I. et al. (2014). Nature 513: 261–265.
61 61 Young, I.D., Ibrahim, M., Chatterjee, R. et al. (2016). Nature 540: 453–457.
62 62 Kern, J., Tran, R., Alonso‐Mori, R. et al. (2014). Nat. Commun. 5: 4371.
63 63 Kern, J., Chatterjee, R., Young, I.D. et al. (2018). Nature 563: 421–425.
64 64 Wei, X., Su, X., Cao, P. et al. (2016). Nature 534: 69–74.
65 65 Su, X., Ma, J., Wei, X. et al. (2017). Science 357: 815.
66 66 Becker, K., Cormann, K.U., and Nowaczyk, M.M. (2011). J. Photochem. Photobiol., B 104: 204–211.
67 67 Shi, L.‐X., Hall, M., Funk, C., and Schröder, W.P. (2012). Biochim. Biophys. Acta, Bioenerg. 1817: 13–25.
68 68 Fagerlund, R.D. and Eaton‐Rye, J.J. (2011). J. Photochem. Photobiol., B 104: 191–203.
69 69 Bricker, T.M., Roose, J.L., Fagerlund, R.D. et al. (2012). Biochim. Biophys. Acta, Bioenerg. 1817: 121–142.
70 70 Pagliano, C., Saracco, G., and Barber, J. (2013). Photosynth. Res. 116: 167–188.
71 71 Rutherford, A.W., Osyczka, A., and Rappaport, F. (2012). FEBS Lett. 586: 603–616.
72 72 Mokvist, F., Sjöholm, J., Mamedov, F., and Styring, S. (2014). Biochemistry 53: 4228–4238.
73 73 Cardona, T., Sedoud, A., Cox, N., and Rutherford, A.W. (2012). Biochim. Biophys. Acta, Bioenerg. 1817: 26–43.
74 74 Diner, B.A. and Rappaport, F. (2002). Annu. Rev. Plant Biol. 53: 551–580.
75 75 Saito, K., Ishida, T., Sugiura, M. et al. (2011). J. Am. Chem. Soc. 133: 14379–14388.
76 76 Narzi, D., Bovi, D., De Gaetano, P., and Guidoni, L. (2015). J. Am. Chem. Soc. 138: 257–264.
77 77 Suomivuori, C.‐M., Winter, N.O.C., Hättig, C. et al. (2016). Theory Comput. 12: 2644–2651.
78 78 Brinkert, K., De Causmaecker, S., Krieger‐Liszkay, A. et al. (2016). Proc. Natl. Acad. Sci. U.S.A. 113: 12144–12149.
79 79 Müh, F., Glöckner, C., Hellmich, J., and Zouni, A. (2012). Biochim. Biophys. Acta, Bioenerg. 1817: 44–65.
80 80 Müh, F. and Zouni, A. (2013). Photosynth. Res. 116: 295–314.
81 81 Fletcher, S. (2015). J. Solid State Electrochem. 19: 241–250.
82 82 Saito, K., Shen, J.‐R., Ishida, T., and Ishikita, H. (2011). Biochemistry 50: 9836–9844.
Читать дальше