Modern Trends in Structural and Solid Mechanics 2

Здесь есть возможность читать онлайн «Modern Trends in Structural and Solid Mechanics 2» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Modern Trends in Structural and Solid Mechanics 2: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Modern Trends in Structural and Solid Mechanics 2»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This book – comprised of three separate volumes – presents the recent developments and research discoveries in structural and solid mechanics; it is dedicated to Professor Isaac Elishakoff. This second volume is devoted to the vibrations of solid and structural members.
has broad scope, covering topics such as: exact and approximate vibration solutions of rods, beams, membranes, plates and three-dimensional elasticity problems, Bolotin's dynamic edge effect, the principles of plate theories in dynamics, nano- and microbeams, nonlinear dynamics of shear extensible beams, the vibration and aeroelastic stability behavior of cellular beams, the dynamic response of elastoplastic softening oscillators, the complex dynamics of hysteretic oscillators, bridging waves, and the three-dimensional propagation of waves. This book is intended for graduate students and researchers in the field of theoretical and applied mechanics.

Modern Trends in Structural and Solid Mechanics 2 — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Modern Trends in Structural and Solid Mechanics 2», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Many papers are devoted to multi-span plates (Moskalenko and Chen 1965; Moskalenko 1968, 1969; Elishakoff and Steinberg 1979; Elishakoff et al . 1993).

Dynamics of cylindrical, conical and shallow spherical shells were analyzed in Bolotin (1960b, 1961c, 1984), Gavrilov (1961a), Zhinzher (1975) and Elishakoff and Wiener (1976).

One of the problems of the DEEM application is the degeneracy of DEE when decaying solutions cannot be constructed for some wave numbers (Bolotin 1984). The resolution of this problem was proposed in Elishakoff (1974) and Elishakoff and Wiener (1976). The solution of the original problem is represented as a sum of solutions of two subproblems. Each of these solutions satisfy the boundary conditions at two opposite boundaries only. The matching conditions described in Bolotin’s original papers (Bolotin 1960a, 1960b, 1961a, 1961b, 1961c) are not used, and it gives us the possibility to avoid difficulties caused by the degeneracy of DEEM.

Thereby, we note the following point. Asymptotic methods can be used in two versions (Andrianov et al . 2014). From the very beginning, a small parameter can be introduced into the PDEs or ODEs and then asymptotic fractional analysis (Kline 1965) can be used. However, we can use variational approaches (Rayleigh–Ritz, Bubnov–Galerkin, Kantorovich, Trefftz, etc.) to solve the original problem and reduce it to the infinite systems of coupled ODEs or algebraic equations. Then, a small parameter, caused by the physical nature of the problem or an artificial (homotopy) one, can be introduced into the infinite system to split it into simplified subsystems. The second approach makes it possible to avoid the degeneracy of DEE.

Other generalizations of DEEM are described in the following sections.

1.4. Generalization for the nonlinear case

To describe the generalization of DEEM to the nonlinear case, we use the nonlinear Kirchhoff beam equation (Kauderer 1958):

[1.19] Let the beam be elastically supported 120 where c cEI c is the - фото 37

Let the beam be elastically supported:

[1.20] where c cEI c is the coefficient characterizing elastic support We - фото 38

where c *= c/EI , c is the coefficient characterizing elastic support.

We search a generating solution in the form

[1.21] Substituting ansatz 121into PDE 119 we obtain an ODE for determining the - фото 39

Substituting ansatz [1.21]into PDE [1.19], we obtain an ODE for determining the time function ξ ( t ) :

[1.22] where ODE 122with initial conditions 123 - фото 40

where

ODE 122with initial conditions 123 has the solution 124 - фото 41

ODE [1.22]with initial conditions

[1.23] has the solution 124 where cn σt k is the Jacobi cosine elliptic - фото 42

has the solution

[1.24] where cn σt k is the Jacobi cosine elliptic functions with period T 4 K - фото 43

where cn( σt , k ) is the Jacobi cosine elliptic functions with period T = 4 K , Modern Trends in Structural and Solid Mechanics 2 - изображение 44is the complete elliptic integral of the first kind with modulus Modern Trends in Structural and Solid Mechanics 2 - изображение 45(Abramowitz and Stegun 1965).

The solution to the problem far from the edges is

[1.25] Modern Trends in Structural and Solid Mechanics 2 - изображение 46

where Solution 125satisfies the original equation 119 but does not satisfy - фото 47.

Solution [1.25]satisfies the original equation [1.19], but does not satisfy the boundary conditions [1.20]. To construct the states localized near the edges, we represent the solution of the original problem in the form

[1.26] Substituting ansatz 126into ODE 119 we obtain 127 In contrast to - фото 48

Substituting ansatz [1.26]into ODE [1.19], we obtain

[1.27] In contrast to the previously considered linear case the equations for - фото 49

In contrast to the previously considered linear case, the equations for functions w 0and wee are coupled due to the nonlinearity of the problem. At the same time, the solution in the inner domain and EEs differ energetically since the EEs are localized in a small vicinity of the beam ends (Andrianov et al . 1979; Awrejcewicz et al . 1998; Andrianov et al . 2004, 2014). Let us estimate the orders of the integrand terms in equation [1.27]with respect to L/λ ≫ 1:

[1.28] Restricting ourselves to the term of order π λ 2 1 in equation 127 - фото 50

Restricting ourselves to the term of order ( π / λ ) 2≫ 1 in equation [1.27], we reduce it to the form:

[1.29] Substituting function w 0into equation 129 we obtain a PDE for function wee - фото 51

Substituting function w 0into equation [1.29], we obtain a PDE for function wee :

[1.30] Modern Trends in Structural and Solid Mechanics 2 - изображение 52

where Modern Trends in Structural and Solid Mechanics 2 - изображение 53.

It is important that PDE [1.30]is linear. The spatial and time variables are not separated exactly; therefore, we apply the Kantorovich variational method (Kantorovich and Krylov 1958) to solve equation [1.30], presenting wee in the form

[1.31] On substituting ansatz 131into PDE 130and applying the Kantorovich method - фото 54

On substituting ansatz [1.31]into PDE [1.30]and applying the Kantorovich method (Kantorovich and Krylov 1958), the following ODE is obtained:

[1.32] with 133 Hereinafter we use the principal value of the arcsin - фото 55

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Modern Trends in Structural and Solid Mechanics 2»

Представляем Вашему вниманию похожие книги на «Modern Trends in Structural and Solid Mechanics 2» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Modern Trends in Structural and Solid Mechanics 2»

Обсуждение, отзывы о книге «Modern Trends in Structural and Solid Mechanics 2» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x