Modern Trends in Structural and Solid Mechanics 2

Здесь есть возможность читать онлайн «Modern Trends in Structural and Solid Mechanics 2» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Modern Trends in Structural and Solid Mechanics 2: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Modern Trends in Structural and Solid Mechanics 2»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This book – comprised of three separate volumes – presents the recent developments and research discoveries in structural and solid mechanics; it is dedicated to Professor Isaac Elishakoff. This second volume is devoted to the vibrations of solid and structural members.
has broad scope, covering topics such as: exact and approximate vibration solutions of rods, beams, membranes, plates and three-dimensional elasticity problems, Bolotin's dynamic edge effect, the principles of plate theories in dynamics, nano- and microbeams, nonlinear dynamics of shear extensible beams, the vibration and aeroelastic stability behavior of cellular beams, the dynamic response of elastoplastic softening oscillators, the complex dynamics of hysteretic oscillators, bridging waves, and the three-dimensional propagation of waves. This book is intended for graduate students and researchers in the field of theoretical and applied mechanics.

Modern Trends in Structural and Solid Mechanics 2 — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Modern Trends in Structural and Solid Mechanics 2», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Figure P11 Elishakoff with his wife Esther Elisha MD during an ASME - фото 13

Figure P.11. Elishakoff with his wife, Esther Elisha, M.D., during an ASME awards ceremony

On behalf of all the authors of this book, including those friends who were unable to contribute, we wish Prof. Isaac Elishakoff many more decades of fruitful works and collaborations for the benefit of world mechanics, in particular.

Modern Trends in Structural and Solid Mechanics 1 – the first of three separate volumes that comprise this book – presents recent developments and research discoveries in structural and solid mechanics, with a focus on the statics and stability of solid and structural members.

The book is centered around theoretical analysis and numerical phenomena and has broad scope, covering topics such as: buckling of discrete systems (elastic chains, lattices with short and long range interactions, and discrete arches), buckling of continuous structural elements including beams, arches and plates, static investigation of composite plates, exact solutions of plate problems, elastic and inelastic buckling, dynamic buckling under impulsive loading, buckling and post-buckling investigations, buckling of conservative and non-conservative systems, buckling of micro and macro-systems. The engineering applications concern both small-scale phenomena with micro and nano-buckling up to large-scale structures, including the buckling of drillstring systems.

Each of the three volumes is intended for graduate students and researchers in the field of theoretical and applied mechanics.

Prof. Noël CHALLAMEL

Lorient, France

Prof. Julius KAPLUNOV

Keele, UK

Prof. Izuru TAKEWAKI

Kyoto, Japan

February 2021

For a color version of all the figures in this chapter, see www.iste.co.uk/challamel/mechanics2.zip.

1

Bolotin’s Dynamic Edge Effect Method Revisited (Review)

A comprehensive review of Bolotin’s edge effect method is presented. This chapter begins with a toy problem and is concluded by nonlinear considerations that have not been developed by Bolotin himself. Various generalizations and modifications of the method are described, along with a variety of solved problems for which a wide list of references is provided. Attempts are also made to frame the method among the known methods for finding rapidly oscillating solutions.

1.1. Introduction

Professor Isaac E. Elishakoff was a doctoral student of the world-renowned scientist V.V. Bolotin (March 29, 1926 to May 28, 2008) (Bolotin 2006). The first research works of I. Elishakoff and his PhD thesis were devoted to the application and development of the dynamic edge effect (EE) method proposed by V.V. Bolotin. After moving from the Soviet Union to the Western world, Prof. Elishakoff made great efforts to popularize the dynamic EE method in the Western scientific community (Elishakoff 1974, 1976; Elishakoff and Wiener 1976).

Therefore, the appearance of a review of papers related to Bolotin’s method in the volume devoted to Prof. Elishakoff’s 75th birthday seems quite reasonable. Moreover, the previous comprehensive reviews of the subject were published in 1976 (Elishakoff 1976) and 1984 (Bolotin 1984).

In the early 1960s, V.V. Bolotin put forward an asymptotic method for studying natural oscillations of plates and shells, which used the inverse of the dimensionless vibration frequency as a small parameter (Bolotin 1960a, 1960b). In a more general formulation, it is a method for solving self-adjoint eigenvalue problems defined in a rectangular domain, called the boundary value problems with quasi-separable variables, according to Bolotin’s terminology. For this reason, the method is referred to as Bolotin’s method or the dynamic edge effect method (DEEM). And despite the fact that 60 years have passed since the method creation, it is still relevant. The purpose of this review is describing various generalizations and modifications of DEEM, the problems solved with the use of this method and also trying to determine the place of DEEM among the known methods for finding rapidly oscillating solutions. Thus, we demonstrate that DEEM can be broadly applied for solving modern problems.

1.2. Toy problem: natural beam oscillations

Demonstrate the main idea of DEEM on a spatially 1D problem, which can be reduced to a transcendental equation and solved numerically with any degree of accuracy (Weaver et al . 1990). Consider the natural oscillations of a beam of length L , described by the following PDE:

[1.1] Here w is the normal displacement E is the Young modulus F is the - фото 14

Here, w is the normal displacement, E is the Young modulus, F is the cross-sectional area of the beam, I is the axial inertia moment of the beam cross-section, and ρ is the density of the beam material.

Let us compare two versions of boundary conditions:

[1.2] Modern Trends in Structural and Solid Mechanics 2 - фото 15

[1.3] We use the following ansatz where ω is the eigenfrequency and W x is the - фото 16

We use the following ansatz:

Modern Trends in Structural and Solid Mechanics 2 - изображение 17

where ω is the eigenfrequency and W ( x ) is the eigenfunction.

The equation for eigenfunction W ( x ) has the form

[1.4] Modern Trends in Structural and Solid Mechanics 2 - изображение 18

The solution of the eigenvalue problem [1.4], [1.2]is given by

[1.5] Modern Trends in Structural and Solid Mechanics 2 - изображение 19

[1.6] Modern Trends in Structural and Solid Mechanics 2 - изображение 20

The eigenvalue problem [1.4], [1.3]does not allow separation of variables. However, if the eigenfunction oscillates rapidly along x (i.e. a rather high form of oscillations is considered), then we can hope that in this case a solution of the form [1.5]is also valid for the inner domain sufficiently distant from the boundaries ( Figure 1.1). Such an expression does not satisfy the boundary conditions. However, if the solution that compensates the residuals at the boundary conditions and decays rapidly, then the approximate expressions for the eigenfunctions and eigenfrequencies can be obtained.

Figure 11 Curve 1 corresponds to the rapidly oscillating solution in the - фото 21

Figure 1.1. Curve 1 corresponds to the rapidly oscillating solution in the inner domain, and curve 2 corresponds to the sum of DEE and the rapidly oscillating solution

Let us suppose the solution of equation [1.4]in the form

[1.7] Modern Trends in Structural and Solid Mechanics 2 - изображение 22

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Modern Trends in Structural and Solid Mechanics 2»

Представляем Вашему вниманию похожие книги на «Modern Trends in Structural and Solid Mechanics 2» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Modern Trends in Structural and Solid Mechanics 2»

Обсуждение, отзывы о книге «Modern Trends in Structural and Solid Mechanics 2» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x