Chen, G. and Zhou, J. (1993). Vibration and Damping in Distributed Systems Vol. II: WKB and Wave Methods, Visualization and Experimentation . CRC Press, Boca Raton.
Chen, G., Coleman, M.P., Zhou, J. (1991). Analysis of vibration eigenfrequencies of a thin plate by the Keller-Rubinow wave method I: Clamped boundary conditions with rectangular or circular geometry. SIAM J. Appl. Math ., 51(4), 967–983.
Chen, G., Coleman, M.P., Zhou, J. (1992). The equivalence between the wave propagation method and Bolotin’s method in the asymptotic estimation of eigenfrequencies of a rectangular plate. Wave Motion , 16(3), 285–297.
Crighton, D.G. (1994). Asymptotics – An indispensable complement to thought, computation and experiment in applied mathematical modelling. In Seventh Europ. Conf. Math. Ind ., Fasano, A., Primicerio, M.B., Teubner, G. (eds). B.G. Teubner, Stuttgart.
Dickinson, S.M. (1971). The flexural vibration of rectangular orthotropic plates subject to in-plane forces. J. Appl. Mech ., 38(3), 699–700.
Dickinson, S.M. (1975a). Bolotin’s method applied to the buckling and lateral vibration of stressed plates. AIAA J ., 13(1), 109–110.
Dickinson, S.M. (1975b). Modified Bolotin’s method applied to buckling and vibration of stressed plates. AIAA J ., 13(12), 1672–1673.
Dickinson, S.M. and Warburton, G.B. (1967). Natural frequencies of plate systems using the edge effect method. J. Mech. Eng. Sci ., 9(4), 318–324.
Dubovskikh, Y.A., Khromatov, V.E., Chirkov, V.E. (1996). Asymptotic analysis of stability and postcritical behavior of elastic panels in a supersonic flow. Mech. Solids , 31(3), 65–75.
Elishakoff, I. (1974). Vibration analysis of clamped square orthotropic plate. AIAA J ., 12, 921–924.
Elishakoff, I. (1976). Bolotin’s dynamic edge-effect method. Shock Vibr. Digest , 8(1), 95–104.
Elishakoff, I. and Steinberg, A. (1979). Eigenfrequencies of continuous plates with arbitrary number of equal spans. J. Appl. Mech ., 46, 656–662.
Elishakoff, I. and Wiener, F. (1976). Vibration of an open shallow cylindrical shell. J. Sound Vibr ., 44, 379–392.
Elishakoff, I., Steinberg, A., van Baten, T. (1993). Vibration of multispan stiffened plates via modified dynamic edge effect method. Comp. Meth. Appl. Mech. Eng ., 105, 211–223.
Elishakoff, I., Lin, Y.K., Zhu, L.P. (1994). Probabilistic and Convex Modelling of Acoustically Excited Structures . Elsevier, Amsterdam.
Emmerling, F.A. (1979). Ermittlung von Eigenkreisfrequenzen schwingender Rechteckplatten mit Hilfe der asymptotishen Methode von Bolotin. Stahlbau , 49(11), 327–334.
Gavrilov, Y.V. (1961a). Determination of natural vibration frequencies of elastic circular cylindrical shells. Izv. AN SSSR OTN Mech. Mashin ., 1, 161–163.
Gavrilov, Y.V. (1961b). Investigation of the spectrum of natural oscillations of elastic cylindrical shells. Tr. Konf. po Teorii Plastin i Obolochek , Kazan State University, 72–76.
Gibigaye, M., Yabi, C.P., Alloba, I.E. (2016). Dynamic response of a rigid pavement plate based on an inertial soil. Int. Schol. Res. Not ., 1–9.
Golubeva, T.N., Korobkov, Y.S., Khromatov, V.E. (2013). The influence of a longitudinal magnetic field on the frequency spectra of oscillations of ferromagnetic plates . Electrotechnika , 3, 44–48.
Gontkevich, V.S. (1964). Natural Oscillations of Plates and Shells . Naukova Dumka, Kiev.
Kantorovich, L.V. and Krylov, V.I. (1958). Approximate Methods of Higher Analysis . Noordhoff, Groningen.
Kauderer, H. (1958). Nichtlineare Mechanik . Springer, Berlin, Göttingen, Heidelberg.
Kaza, V. and Ramaiah, G.K. (1978). Use of asymptotic solutions from a modified Bolotin method for obtaining natural frequencies of clamped rectangular orthotropic plates. J. Sound Vib ., 59(3), 335–347.
Keller, J.B. and Rubinow, S.I. (1960). Asymptotic solution of eigenvalue problems. Ann. Phys ., 9(1), 24–75. Errata, Ann. Phys ., 9(2).
Khromatov, V.E. (1972a). Properties of spectra of thin circular cylindrical shells oscillating near momentless stress state. Mech. Solids , 7(2), 103–108.
Khromatov, V.E. (1972b). Density of frequencies of natural oscillations of thin spherical shells in momentless stress state. Trudy Moscow Energet. Inst ., 101, 148–153.
Khromatov, V.E. and Golubeva, T.N. (2013). Oscillations and stability of a ferromagnetic cylindrical shell in a magnetic field. Vestnik Moscow Avia. Inst ., 20(3), 212–219.
King, W.W. and Lin, C.-C. (1974). Application of Bolotin’s method to vibrations of plates. AIAA J ., 12(3), 399–401.
Kline, S.J. (1965). Similitude and Approximation Theory . McGraw-Hill, New York.
Koreshkova, N.S. and Khromatov, V.E. (2009). On the influence of a transverse magnetic field on the vibration spectra of shallow shells. Mech. Solids , 44, 632–638.
Krizhevskii, G.A. (1988). Combination of Rayleigh and dynamic edge effect methods in studying vibrations of rectangular plates. J. Appl. Mech. Techn. Phys ., 29(6), 919–921.
Krizhevskii, G.A. (1989). Vibration and stability of orthotropic rectangular plates. Sov. Appl. Mech ., 25(8), 822–825.
Kudryavtsev, E.P. (1960). Influence of shear deformation and rotary inertia on flexural vibration of an elastic beam. Izv. AN SSSR OTN Mech. Mashin ., 5, 156–159.
Kudryavtsev, E.P. (1964). Application of asymptotic method for investigating the eigenfrequencies of elastic rectangular plates . Rasch. Prochn ., 10, 352–362.
Lin, C.C. and King, W.W. (1974). Free transverse vibrations of rectangular unsymmetrically laminated plates. J. Sound Vib ., 36(1), 91–103.
Maslov, V.P. and Fedoryuk, M.V. (1981). Semi-classical Approximation in Quantum Mechanics . Kluwer, Dordrecht.
Meilani, M. (2012). Modified Bolotin method to obtain the natural frequency of stiffened plate with semirigid support. Procedia Eng ., 50, 110–121.
Meilani, M. (2015). Obtaining the natural frequency of stiffened plate with modified Bolotin method. Int. J. Appl. Eng. Res ., 9(23), 21501–21512.
Mikhlin, Y.V. and Avramov, K.V. (2011). Nonlinear normal modes for vibrating mechanical systems. Review of theoretical developments. Appl. Mech. Rev ., 63(6), 060802–21.
Mitzner, K.M. (2003). Foreword. In Theory of Edge Diffraction in Electromagnetics , Ufimtsev, P.Y. (ed.). Tech Science Press, Encino, California.
Moskalenko, V.N. (1961). On the application of refined theories of bending of plates in free vibration problems. Inzh. Zh ., 1(3), 93–101.
Moskalenko, V.N. (1968). Random vibrations of multi-span plates. Mech. Solids , 3(4), 79–84.
Moskalenko, V.N. (1969). On the vibrations of multispan plates. Rasch. Prochn ., 14, 360–367.
Moskalenko, V.N. (1972). On the frequency spectra of natural vibrations of shells of revolution. J. Appl. Math. Mech ., 36(2), 279–283.
Moskalenko, V.N. (1975). Frequency spectra and modes of free vibrations of doubly periodic systems. J. Appl. Math. Mech ., 39, 503–510.
Moskalenko, V.N. and Chen, D.L. (1965). On natural vibrations of multispan uncut plates. Prikl. Mekh. (Appl. Mech.) , 1(3), 59–66.
Nayfeh, A.H. (2000). Perturbation Methods . Wiley, New York.
Nelson, H.M. (1978). High frequency flexural vibration of thick rectangular bars and plates. J. Sound Vib ., 60, 101–118.
Pevzner, P., Berkovits, A., Weller, T. (2000). Further modification of Bolotin method in vibration analysis of rectangular plates. AIAA J ., 38(9), 1725–1729.
Читать дальше