Mantle Convection and Surface Expressions

Здесь есть возможность читать онлайн «Mantle Convection and Surface Expressions» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Mantle Convection and Surface Expressions: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Mantle Convection and Surface Expressions»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

A multidisciplinary perspective on the dynamic processes occurring in Earth's mantle The convective motion of material in Earth's mantle, powered by heat from the deep interior of our planet, drives plate tectonics at the surface, generating earthquakes and volcanic activity. It shapes our familiar surface landscapes, and also stabilizes the oceans and atmosphere on geologic timescales.
Mantle Convection and Surface Expressions Volume highlights include:
Perspectives from different scientific disciplines with an emphasis on exploring synergies Current state of the mantle, its physical properties, compositional structure, and dynamic evolution Transport of heat and material through the mantle as constrained by geophysical observations, geochemical data and geodynamic model predictions Surface expressions of mantle dynamics and its control on planetary evolution and habitability The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.

Mantle Convection and Surface Expressions — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Mantle Convection and Surface Expressions», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

73 Jessell, M. W., Bons, P. D., Griera, A., Evans, L. A., & Wilson, C. J. L. (2009). A tale of two viscosities. Journal of Structural Geology, 31(7), 719–736. https://doi.org/10.1016/j.jsg.2009.04.010

74 Kaercher, P., Miyagi, L., Kanitpanyacharoen, W., Zepeda‐Alarcon, E., Wang, Y., Parkinson, D., et al. (2016). Two‐phase deformation of lower mantle mineral analogs. Earth and Planetary Science Letters, 456, 134–145. https://doi.org/10.1016/j.epsl.2016.09.030

75 Karato, S. I. (1998). Some remarks on the origin of seismic anisotropy in the D” layer. Earth, Planets and Space, 50(11–12), 1019–1028. https://doi.org/10.1186/BF03352196

76 Karato, S. I. (2009). Theory of lattice strain in a material undergoing plastic deformation: Basic formulation and applications to a cubic crystal. Physical Review B ‐ Condensed Matter and Materials Physics, 79(21), 214106. https://doi.org/10.1103/PhysRevB.79.214106

77 Karato, S. I. (2010). Rheology of the Earth’s mantle: A historical review. Gondwana Research, 18(1), 17–45. https://doi.org/10.1016/J.GR.2010.03.004

78 Karato, S. I., & Weidner, D. J. (2008). Laboratory Studies of Rheological Properties of Minerals Under Deep Mantle Conditions. Elements, 4, 191–196. https://doi.org/10.2113/GSELEMENTS.4.3.191

79 Karato, S. I., Zhang, S., & Wenk, H. R. (1995). Superplasticity in earth’s lower mantle: Evidence from seismic anisotropy and rock physics. Science, 270(5235), 458–461. https://doi.org/10.1126/science.270.5235.458

80 Karato, S. I., Jung, H., Katayama, I., & Skemer, P. (2007). Geodynamic Significance of Seismic Anisotropy of the Upper Mantle: New Insights from Laboratory Studies. Annual Review of Earth and Planetary Sciences, 36(1), 59–95. https://doi.org/10.1146/annurev.earth.36.031207.124120

81 Karki, B. B., & Crain, J. (1998). First‐principles determination of elastic properties of CaSiO 3 perovskite at lower mantle pressures Elastic Moduli and Anisotropy, 25(14), 2741–2744.

82 Kavner, A., & Duffy, T. S. (2001). Strength and elasticity of ringwoodite at upper mantle pressures. Geophysical Research Letters. https://doi.org/10.1029/2000GL012671

83 Kawazoe, T., Ohuchi, T., Nishiyama, N., Nishihara, Y., & Irifune, T. (2010). Preliminary deformation experiment of ringwoodite at 20 GPa and 1 700 K using a D‐DIA apparatus. Journal of Earth Science, 21(5), 517–522. https://doi.org/10.1007/s12583‐010‐0120‐2

84 Knipe, R.. (1989). Deformation mechanisms — recognition from natural tectonites. Journal of Structural Geology, 11(1–2), 127–146. https://doi.org/10.1016/0191‐8141(89)90039‐4

85 Kraych, A., Carrez, P., Hirel, P., Clouet, E., & Cordier, P. (2016). Peierls potential and kink‐pair mechanism in high‐pressure MgSiO3 perovskite: An atomic scale study. Physical Review B, 93(1), 1–9. https://doi.org/10.1103/PhysRevB.93.014103

86 Kubo, A., Kiefer, B., Shim, S.‐H., Shen, G., Prakapenka, V. B., & Duffy, T. S. (2008). Rietveld structure refinement of MgGeO3 post‐perovskite phase to 1 Mbar. American Mineralogist, 93(7), 965–976. https://doi.org/10.2138/am.2008.2691

87 Kunz, M., Caldwell, W. A., Miyagi, L., & Wenk, H. R. (2007). In situ laser heating and radial synchrotron x‐ray diffraction in a diamond anvil cell. Review of Scientific Instruments, 78(6). https://doi.org/10.1063/1.2749443

88 Kurnosov, A., Marquardt, H., Frost, D. J., Ballaran, T. B., & Ziberna, L. (2017). Evidence for a Fe3+‐rich pyrolitic lower mantle from (Al,Fe)‐bearing bridgmanite elasticity data. Nature, 543(7646), 543–546. https://doi.org/10.1038/nature21390

89 Lebensohn, R. A., & Tomé, C. N. (1993). A self‐consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: Application to zirconium alloys. Acta Metallurgica Et Materialia, 41(9), 2611–2624. https://doi.org/10.1016/0956‐7151(93)90130‐K

90 Li, C., van der Hilst, R. D., Engdahl, E. R., & Burdick, S. (2008). A new global model for P wave speed variations in Earth’s mantle. Geochemistry, Geophysics, Geosystems, 9(5), n/a‐n/a. https://doi.org/10.1029/2007GC001806

91 Li, L., & Weidner, D. J. (2015). In situ analysis of texture development from sinusoidal stress at high pressure and temperature. Review of Scientific Instruments, 86(12), 125106. https://doi.org/10.1063/1.4937398

92 Li, L., Weidner, D. J., Chen, J., Vaughan, M. T., Davis, M., & Durham, W. B. (2004). X‐ray strain analysis at high pressure: Effect of plastic deformation in MgO. Journal of Applied Physics, 95(12), 8357–8365. https://doi.org/10.1063/1.1738532

93 Liermann, H. P., Merkel, Ś., Miyagi, L., Wenk, H. R., Shen, G., Cynn, H., & Evans, W. J. (2009). Experimental method for in situ determination of material textures at simultaneous high pressure and high temperature by means of radial diffraction in the diamond anvil cell. Review of Scientific Instruments, 80(10), 1–8. https://doi.org/10.1063/1.3236365

94 Lin, F., Hilairet, N., Raterron, P., Addad, A., Immoor, J., Marquardt, H., et al. (2017). Elasto‐viscoplastic self consistent modeling of the ambient temperature plastic behavior of periclase deformed up to 5.4 GPa. Journal of Applied Physics, 122(20). https://doi.org/10.1063/1.4999951

95 Lin, J.‐F., Wenk, H.‐R., Voltolini, M., Speziale, S., Shu, J., & Duffy, T. S. (2009). Deformation of lower‐mantle ferropericlase (Mg,Fe)O across the electronic spin transition. Physics and Chemistry of Minerals, 36(10), 585–592. https://doi.org/10.1007/s00269‐009‐0303‐5

96 Long, M. D., & Becker, T. W. (2010). Mantle dynamics and seismic anisotropy. Earth and Planetary Science Letters, 297(3–4), 341–354. https://doi.org/10.1016/J.EPSL.2010.06.036

97 Long, M. D., Xiao, X., Jiang, Z., Evans, B., & Karato, S. ichiro. (2006). Lattice preferred orientation in deformed polycrystalline (Mg,Fe)O and implications for seismic anisotropy in D″. Physics of the Earth and Planetary Interiors, 156(1–2), 75–88. https://doi.org/10.1016/j.pepi.2006.02.006

98 Lutterotti, L., Matthies, S., Wenk, H. R., Schultz, A. S., & Richardson, J. W. (1997). Combined texture and structure analysis of deformed limestone from time‐of‐flight neutron diffraction spectra. Journal of Applied Physics, 81(2), 594–600. https://doi.org/10.1063/1.364220

99 Lynner, C., & Long, M. D. (2015). Heterogeneous seismic anisotropy in the transition zone and uppermost lower mantle: evidence from South America, Izu‐Bonin and Japan. Geophysical Journal International, 201(3), 1545–1552. https://doi.org/10.1093/gji/ggv099

100 Mainprice, D., Barruol, G., & Ben Ismaïl, W. (2000). The seismic anisotropy of the earth’s mantle: From single crystal to polycrystal. Geophysical Monograph Series, 117, 237–264. https://doi.org/10.1029/GM117p0237

101 Mainprice, D., Tommasi, A., Ferré, D., Carrez, P., & Cordier, P. (2008). Predicted glide systems and crystal preferred orientations of polycrystalline silicate Mg‐Perovskite at high pressure: Implications for the seismic anisotropy in the lower mantle. Earth and Planetary Science Letters, 271(1–4), 135–144. https://doi.org/10.1016/j.epsl.2008.03.058

102 Manga, M., & Jeanloz, R. (1996). Axial temperature gradients in dielectric samples in the laser‐heated diamond cell. Geophysical Research Letters. https://doi.org/10.1029/96GL01602

103 Marquardt, H., & Miyagi, L. (2015). Slab stagnation in the shallow lower mantle linked to an increase in mantle viscosity. Nature Geoscience, 8(4), 311–314. https://doi.org/10.1038/ngeo2393

104 Marquardt, H., Speziale, S., Reichmann, H. J., Frost, D. J., Schilling, F. R., & Garnero, E. J. (2009). Elastic shear anisotropy of ferropericlase in earth’s lower mantle. Science, 324(5924), 224–226. https://doi.org/10.1126/science.1169365

105 Martinez, I., Wang, Y., Guyot, F., Liebermann, R. C., & Doukham, J.‐C. (1997). Microstructures and iron partitioning in (Mg,Fe)SiO3 perovskite‐ (Mg,Fe)O magnesiowustite assemblages: An analytical transmission electron microscopy study. Journal of Geophysical Research, 102(B3), 5265–5280. https://doi.org/10.1029/96JB03188

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Mantle Convection and Surface Expressions»

Представляем Вашему вниманию похожие книги на «Mantle Convection and Surface Expressions» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Mantle Convection and Surface Expressions»

Обсуждение, отзывы о книге «Mantle Convection and Surface Expressions» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x