7 Appel, F., & Wielke, B. (1985). Low temperature deformation of impure MgO single crystals. Materials Science and Engineering, 73, 97–103. https://doi.org/10.1016/0025‐5416(85)90299‐X
8 Arrhenius, S. (1889). Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren. Zeitschrift Für Physikalische Chemie, 4(1), 226–248. https://doi.org/10.1515/zpch‐1889‐0416
9 Azuma, S., Nomura, R., Uesugi, K., Nakashima, Y., Kojima, Y., Doi, S., & Kakizawa, S. (2018). Anvil design for slip‐free high pressure deformation experiments in a rotational diamond anvil cell. High Pressure Research, 38(1), 23–31. https://doi.org/10.1080/08957959.2017.1396327
10 Barreiro, J. G., Lonardelli, I., Wenk, H. R., Dresen, G., Rybacki, E., Ren, Y., & Tomé, C. N. (2007). Preferred orientation of anorthite deformed experimentally in Newtonian creep. Earth and Planetary Science Letters, 264(1–2), 188–207. https://doi.org/10.1016/j.epsl.2007.09.018
11 Boehler, R. (2000). Laser heating in the diamond cell: techniques and applications. Hyperfine Interactions, 128(1/3), 307–321. https://doi.org/10.1023/A:1012648019016
12 Boioli, F., Carrez, P., Cordier, P., Devincre, B., Gouriet, K., Hirel, P., et al. (2017). Pure climb creep mechanism drives flow in Earth’s lower mantle. Science Advances, 3(3), e1601958. https://doi.org/10.1126/sciadv.1601958
13 Bons, P. D., & den Brok, B. (2000). Crystallographic preferred orientation development by dissolution–precipitation creep. Journal of Structural Geology, 22(11–12), 1713–1722. https://doi.org/10.1016/S0191‐8141(00)00075‐4
14 Brokmeier, H. G., Böcker, W., & Bunge, H. J. (1988). Neutron Diffraction Texture Analysis in Extruded Al‐Pb Composites. Textures and Microstructures, 8, 429–441. https://doi.org/10.1155/TSM.8‐9.429
15 Brown, J. M., & Shankland, T. J. (1981). Thermodynamic parameters in the Earth as determined from seismic profiles. Geophysical Journal International, 66(3), 579–596. https://doi.org/10.1111/j.1365‐246X.1981.tb04891.x
16 Burnley, P. C., & Kaboli, S. (2019). Elastic plastic self‐consistent (EPSC) modeling of San Carlos olivine deformed in a D‐DIA apparatus. American Mineralogist, 104(2), 276–281. https://doi.org/10.2138/am‐2019‐6666
17 Burnley, P. C., & Zhang, D. (2008). Interpreting in situ x‐ray diffraction data from high pressure deformation experiments using elastic–plastic self‐consistent models: an example using quartz. Journal of Physics: Condensed Matter, 20(28), 285201. https://doi.org/10.1088/0953‐8984/20/28/285201
18 Bystricky, M., Heidelbach, F., & Mackwell, S. (2006). Large‐strain deformation and strain partitioning in polyphase rocks: Dislocation creep of olivine–magnesiowüstite aggregates. Tectonophysics, 427(1–4), 115–132. https://doi.org/10.1016/J.TECTO.2006.05.025
19 Canova, G. R., Wenk, H. R., & Molinari, A. (1992). Deformation modelling of multi‐phase polycrystals: case of a quartz‐mica aggregate. Acta Metallurgica Et Materialia, 40(7), 1519–1530. https://doi.org/10.1016/0956‐7151(92)90095‐V
20 Carrez, P., Ferré, D., & Cordier, P. (2007a). Implications for plastic flow in the deep mantle from modelling dislocations in MgSiO3 minerals. Nature, 446(7131), 68–70. https://doi.org/10.1038/nature05593
21 Carrez, P., Ferré, D., & Cordier, P. (2007b). Peierls‐Nabarro model for dislocations in MgSiO3 post‐perovskite calculated at 120 GPa from first principles. Philosophical Magazine, 87(22), 3229–3247. https://doi.org/10.1080/14786430701268914
22 Castelnau, O., Blackman, D. K., Lebensohn, R. A., & Ponte Castañeda, P. (2008). Micromechanical modeling of the viscoplastic behavior of olivine. Journal of Geophysical Research, 113(B9), B09202. https://doi.org/10.1029/2007JB005444
23 Chandler, B. C., Yuan, K., Li, M., Cottaar, S., Romanowicz, B., Tomé, C. N., & Wenk, H. R. (2018). A Refined Approach to Model Anisotropy in the Lowermost Mantle. IOP Conference Series: Materials Science and Engineering, 375(1), 012002. https://doi.org/10.1088/1757‐899X/375/1/012002
24 Chen, J., Weidner, D. J., & Vaughan, M. T. (2002). The strength of Mg0.9Fe0.1SiO3 perovskite at high pressure and temperature. Nature, 419(6909), 824–826. https://doi.org/10.1038/nature01130
25 Clausen, B., Tomé, C. N., Brown, D. W., & Agnew, S. R. (2008). Reorientation and stress relaxation due to twinning: Modeling and experimental characterization for Mg. Acta Materialia, 56(11), 2456–2468. https://doi.org/10.1016/J.ACTAMAT.2008.01.057
26 Coble, R. L. (1963). A Model for Boundary Diffusion Controlled Creep in Polycrystalline Materials. Journal of Applied Physics, 34(6), 1679–1682. https://doi.org/10.1063/1.1702656
27 Copley, S. M., & Pask, J. A. (1965). Plastic Deformation of MgO Single Crystals up to 1600oC. Journal of the American Ceramic Society, 48(3), 139–146. https://doi.org/10.1111/j.1151‐2916.1965.tb16050.x
28 Cordier, P., & Goryaeva, A. (Eds.). (2018). Multiscale modeling of the mantle rheology : the RheoMan project. European research council. Retrieved from https://books.google.com/books?id=8bTRvQEACAAJ&dq=Multiscale+Modeling+of+the+Mantle+Rheology&hl=en&sa=X&ved=0ahUKEwix9_zn9trjAhWBtp4KHVcOAZ0Q6AEIKjAA
29 Cordier, P., Ungár, T., Zsoldos, L., & Tichy, G. (2004). Dislocation creep in MgSiO3 perovskite at conditions of the Earth’s uppermost lower mantle. Nature, 428(6985), 837–840. https://doi.org/10.1038/nature02472
30 Cottaar, S., Li, M., McNamara, A. K., Romanowicz, B., & Wenk, H. R. (2014). Synthetic seismic anisotropy models within a slab impinging on the core‐mantle boundary. Geophysical Journal International, 199(1), 164–177. https://doi.org/10.1093/gji/ggu244
31 Creasy, N., Pisconti, A., Long, M. D., Thomas, C., & Wookey, J. (2019). Constraining lowermost mantle anisotropy with body waves: a synthetic modelling study. Geophysical Journal International, 217(2), 766–783. https://doi.org/10.1093/gji/ggz049
32 Cross, A. J., & Skemer, P. (2017). Ultramylonite generation via phase mixing in high‐strain experiments. Journal of Geophysical Research: Solid Earth, 122(3), 1744–1759. https://doi.org/10.1002/2016JB013801
33 Deng, J., & Lee, K. K. M. (2017). Viscosity jump in the lower mantle inferred from melting curves of ferropericlase. Nature Communications, 8(1), 1997. https://doi.org/10.1038/s41467‐017‐02263‐z
34 Dobson, D. P., McCormack, R., Hunt, S. A., Ammann, M. W., Weidner, D., Li, L., & Wang, L. (2012). The relative strength of perovskite and post‐perovskite NaCoF3. Mineralogical Magazine, 76(04), 925–932. https://doi.org/10.1180/minmag.2012.076.4.09
35 Evans, W. J., Yoo, C.‐S., Lee, G. W., Cynn, H., Lipp, M. J., & Visbeck, K. (2007). Dynamic diamond anvil cell (dDAC): A novel device for studying the dynamic‐pressure properties of materials. Review of Scientific Instruments, 78(7), 073904. https://doi.org/10.1063/1.2751409
36 Ferré, D., Carrez, P., & Cordier, P. (2007). First principles determination of dislocations properties of MgSiO3 perovskite at 30 GPa based on the Peierls‐Nabarro model. Physics of the Earth and Planetary Interiors, 163(1–4), 283–291. https://doi.org/10.1016/j.pepi.2007.05.011
37 Ferré, D., Cordier, P., & Carrez, P. (2009). Dislocation modeling in calcium silicate perovskite based on the Peierls‐Nabarro model. American Mineralogist, 94(1), 135–142. https://doi.org/10.2138/am.2009.3003
38 Ferreira, A. M. G., Faccenda, M., Sturgeon, W., Chang, S.‐J., & Schardong, L. (2019). Ubiquitous lower‐mantle anisotropy beneath subduction zones. Nature Geoscience, 12(4), 301–306. https://doi.org/10.1038/s41561‐019‐0325‐7
39 Ford, H. A., & Long, M. D. (2015). A regional test of global models for flow, rheology, and seismic anisotropy at the base of the mantle. Physics of the Earth and Planetary Interiors, 245, 71–75. https://doi.org/10.1016/J.PEPI.2015.05.004
Читать дальше