Biodiesel Technology and Applications

Здесь есть возможность читать онлайн «Biodiesel Technology and Applications» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Biodiesel Technology and Applications: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Biodiesel Technology and Applications»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Energy technologies have attracted great attention due to the fast development of sustainable energy. Biodiesel technologies have been identified as the sustainable route through which overdependence on fossil fuels can be reduced. Biodiesel has played a key role in handling the growing challenge of a global climate change policy. Biodiesel is defined as the monoalkyl esters of vegetable oils or animal fats. Biodiesel is a cost-effective, renewable, and sustainable fuel that can be made from vegetable oils and animal fats. Compared to petroleum-based diesel, biodiesel would offer a non-toxicity, biodegradability, improved air quality and positive impact on the environment, energy security, safe-to-handle, store and transport and so on. Biodiesels have been used as a replacement of petroleum diesel in transport vehicles, heavy-duty trucks, locomotives, heat oils, hydrogen production, electricity generators, agriculture, mining, construction, and forestry equipment.
This book describes a comprehensive overview, covering a broad range of topics on biodiesel technologies and allied applications. Chapters cover history, properties, resources, fabrication methods, parameters, formulations, reactors, catalysis, transformations, analysis, in situ spectroscopies, key issues and applications of biodiesel technology. It also includes biodiesel methods, extraction strategies, biowaste utilization, oleochemical resources, non-edible feedstocks, heterogeneous catalysts, patents, and case-studies. Progress, challenges, future directions, and state-of-the-art biodiesel commercial technologies are discussed in detail. This book is an invaluable resource guide for professionals, faculty, students, chemical engineers, biotechnologists, and environmentalists in these research and development areas.

Biodiesel Technology and Applications — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Biodiesel Technology and Applications», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Wiley Global Headquarters111 River Street, Hoboken, NJ 07030, USA

For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.

Limit of Liability/Disclaimer of WarrantyWhile the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials, or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read.

Library of Congress Cataloging-in-Publication Data

ISBN 9781119724643

Cover image: Pixabay.comCover design by Russell Richardson

Set in size of 11pt and Minion Pro by Manila Typesetting Company, Makati, Philippines

Printed in the USA

10 9 8 7 6 5 4 3 2 1

Preface

Energy technologies have attracted great attention due to the fast development of sustainable energy. Biodiesel technologies have been identified as the sustainable route through which overdependence on fossil fuels can be reduced. Biodiesel has played a key role in handling the growing challenge of a global climate change policy. Biodiesel is defined as the monoalkyl esters of vegetable oils or animal fats. Biodiesel is a cost-effective, renewable, and sustainable fuel that can be made from vegetable oils and animal fats. Compared to petroleum-based diesel, biodiesel would offer a non-toxicity, biodegradability, improved air quality and positive impact on the environment, energy security, safe-to-handle, store and transport, and so on. Biodiesels have been used as a replacement of petroleum diesel in transport vehicles, heavy-duty trucks, locomotives, heat oils, hydrogen production, electricity generators, agriculture, mining, construction, and forestry equipment.

This book describes a comprehensive overview, covering a broad range of topics on biodiesel technologies and allied applications. Chapters cover history, properties, resources, fabrication methods, parameters, formulations, reactors, catalysis, transformations, analysis, in situ spectroscopies, key issues and applications of biodiesel technology. It also includes bio-diesel methods, extraction strategies, biowaste utilization, oleochemical resources, non-edible feedstocks, heterogeneous catalysts, patents, and case-studies. Progress, challenges, future directions, and state-of-the-art biodiesel commercial technologies are discussed in detail. This book is an invaluable resource guide for professionals, faculty, students, chemical engineers, biotechnologists, and environmentalists in these research and development areas. This book includes the eighteen chapters and the summaries are given as follows.

Chapter 1details the biocatalytic production of biodiesel. Microbial enzymes such as lipases act as biocatalysts in the transesterification process of biodiesel production. Suitable and cost-effective feedstocks or substrates for biodiesel production including their percentage yields are discussed. Factors that affect the enzymatic transesterification reaction are also explained.

Chapter 2addresses ultrasonic energy which can increase the interface area while creating a thermal effect in heterogeneous biodiesel production process to result in higher biodiesel yield. Fundamental understanding of the improved reactant-catalyst interaction, the nature of the thermal effect, favorable process behaviors, reaction kinetic, as well as the effect on bio-diesel quality is particularly addressed.

Chapter 3is about the study of different types of catalysts used for biodiesel production. The classification of catalysts, advantages, and limitations, along with their mechanism, is explained. The heterogeneous catalysts’ synthetic methods and immobilization of biocatalyst are also discussed in detail.

Chapter 4discusses various methods used to produce value-added chemicals from biodiesel-derived glycerol. The main focus being is given to hydrogenolysis as a transformative process to selectively produce 1,2-propanediol and the advancements in biodiesel technologies. Furthermore, knowledge gaps are highlighted based on extensive literature research on the subject.

Chapter 5discusses various techniques of synthesizing biodiesel and review of various existing analytical technologies for characterization of biodiesel. The chapter focuses on the current status of biodiesel in India, i.e., using non-edible sources and future feasibility of developing new methods of characterization to reduce the cost of biodiesel production.

Chapter 6examines various established technologies available for the production of biodiesel, viz ., chemical reaction, direct combustion, thermochemical conversion, and biomechanical conversion. Each technology is apportioned to a certain type of feedstock. Case studies, current status, and future potential of commercialization of biodiesel production in Africa are also discussed.

There is a huge demand for sustainable biofuel production in coming decades. The key challenges for biodiesel production are high FFA with the desired level of yield, stability, optimized and flexible production, commercialization of feedstock and environmentally friendly cycle. The collective effort and commitment of research survey regard feedstocks and commercialization of technology around the globe towards sustainable energy are expressed in terms of accelerating the biofuel economy in Chapter 7.

Chapter 8provides an overview of the available feedstocks, production methods, and the benefits and constraints of using homogeneous, heterogeneous, and enzymatic catalysts for biodiesel. Some latest intensification techniques to manage mass transfer restrictions of oil and alcohol phases along with some production cost reduction measures are also highlighted.

Chapter 9discusses different types of feedstocks used for synthesizing biodiesel and feedstock selection criteria. Moreover, all biodiesel production methods (i.e., dilution with hydrocarbons blending, micro-emulsion, pyrolysis, and transesterification) are also described in detail with their advantages and disadvantages. The major focus is given to the various transesterification methods. Production methods also include experimental setup layouts, all process parameters, reaction conditions, the latest advancement in reaction processes, and their effects on biodiesel yield.

Chapter 10reviews the potential use of non-edible feedstocks in the production of biodiesel. Special attention is given to the types of feedstocks available and their production pathways to biodiesel. The state-of-the-art technology, the properties of the fuel produced, and the environmental concerns of biofuels are also discussed.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Biodiesel Technology and Applications»

Представляем Вашему вниманию похожие книги на «Biodiesel Technology and Applications» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Biodiesel Technology and Applications»

Обсуждение, отзывы о книге «Biodiesel Technology and Applications» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x