Javid A. Parray - Nano-Technological Intervention in Agricultural Productivity

Здесь есть возможность читать онлайн «Javid A. Parray - Nano-Technological Intervention in Agricultural Productivity» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Nano-Technological Intervention in Agricultural Productivity: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Nano-Technological Intervention in Agricultural Productivity»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Provides detailed information about the use of nanotechnology in remediating waste and pollution in agriculture  Nano-Technological Intervention in Agricultural Productivity Organized into nine chapters, the book opens with a thorough overview of the functions, classification, properties, synthesis, and applications of nanoparticles. Following a discussion of the environmental and agricultural implications of nanotechnology, the authors examine the current role and future prospects of nanotechnology in managing plant diseases, improving agri-food production, and increasing agricultural productivity. Subsequent chapters cover lignin nanoparticles, various applications of nanotechnology in agriculture, and nano-based advances in plant and microbial science. Offering an up-to-date account of the role of nanotechnologies in agricultural bioremediation, this book: 
Explores biotechnological advances in the development of sophisticated green technologies for waste minimization and waste control Emphasizes the use of microbes for degradation and removal of various xenobiotic substances Discusses bioremediation approaches in relation to the impact of increased urbanization and industrialization on the environment Covers a variety of applications of nanotechnology in agriculture, including nano-fertilizers, nano-biosensors, nano-pesticides, and nanoparticle protection in plants 
 is a valuable resource for students in plant biotechnology and agricultural science and engineering, as well as an important reference for researchers in plant biotechnology and agricultural sciences, particularly those with interest in the use of nanomaterials for pollution remediation and sustainable development.

Nano-Technological Intervention in Agricultural Productivity — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Nano-Technological Intervention in Agricultural Productivity», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

61 61 Cho, C.H., Aspetti, C.O., Park, J., and Agarwal, R. (2013). Silicon coupled with plasmon nanocavities generates bright visible hot luminescence. Nat. Photonics 7: 285–289.

62 62 Chowdhury, F.I., Nayfeh, M.H., and Nayfeh, A.M. (2016). Enhanced performance of thin‐film silicon solar cells with a top film of silicon nanoparticles due to down‐conversion and near resonance charge transport. J. Sol. Energy 125: 332–338.

63 63 Swinehart, D.F. (1962). The Beer‐Lambert law. J. Chem. Educ. 39: 333. https://doi.org/10.1021/ed039p333.

64 64 Peng, K., Fu, L., Yang, H., and Ouyang, J. (2016). Perovskite LaFeO3/−montmorillonite nanocomposites: synthesis, interface characteristics and enhanced photocatalytic activity. Sci. Rep. 6: 19723. https://doi.org/10.1038/srep19723.

65 65 Eustis, S. and El‐Sayed, M.A. (2006). Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev. 35: 209–217. https://doi.org/10.1039/B514191E.

66 66 Khlebtsov, N. and Dykman, L. (2010). Optical properties andbiomedical applications of plasmonic nanoparticles. J. Quant. Spectrosc. Radiat. Transf. 111: 1–35. https://doi.org/10.1016/j.jqsrt.2009.07.012.

67 67 Khlebtsov, N.G. and Dykman, L.A. (2010). Optical properties and biomedical applications of plasmonic nanoparticles. J. Quant. Spectrosc. Radiat. Transfer 111: 1–35. https://doi.org/10.1016/j.jqsrt.2009.07.012.

68 68 Reiss, G. and Hutten, A. (2005). Magnetic nanoparticles: applications beyond data storage. Nat. Mater. 4: 725–726. https://doi.org/10.1038/nmat1494.

69 69 Faivre, D. and Bennet, M. (2016). Materials science: magnetic nanoparticles line up. Nature 535: 235–236. https://doi.org/10.1038/535235a.

70 70 Qi, M., Zhang, K., Li, S. et al. (2016). Superparamagnetic Fe3O4 nanoparticles: synthesis by a solvothermal process and functionalization for a magnetic targeted curcumin delivery system. New J. Chem. 4480: 4480–4491. https://doi.org/10.1039/c5nj02441b.

71 71 Wu, W., He, Q., and Jiang, C. (2008). Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res. Lett. 3: 397–415. https://doi.org/10.1007/s11671-008-9174-9.

72 72 Guo, D., Xie, G., and Luo, J. (2014). Mechanical properties of nanoparticles: basics and applications. J. Phys. D: Appl. Phys. 47: 13001. https://doi.org/10.1088/0022-3727/47/1/013001.

73 73 Lee, S., Choi, S.U.‐S., Li, S., and Eastman, J.A. (1999). Measuring thermal conductivity of fluids containing oxide nanoparticles. J. Heat Transfer 121: 280–285. https://doi.org/10.1115/1.2825978.

74 74 Cao, Y.C. (2002). Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 80 (297): 1536–1540. https://doi.org/10.1126/science.297.5586.1536.

75 75 Loureiro, A., Azoia, N.G., Gomes, A.C., and Cavaco‐Paulo, A. (2016). Albumin‐based nanodevices as drug carriers. Curr. Pharm. Des. 22: 1371–1390.

76 76 Alexis, F., Pridgen, E., Molnar, L.K., and Farokhzad, O.C. (2008). Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol. Pharmaceutics 5: 505–515. https://doi.org/10.1021/mp800051m.

77 77 Ali, A., Zafar, H., Zia, M. et al. (2016). Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol. Sci. Appl 9: 49–67. https://doi.org/10.2147/NSA.S99986.

78 78 Jain, P.K., Lee, K.S., El‐Sayed, I.H., and El‐Sayed, M.A. (2006). Calculated absorption and scattering properties of gold nanoparticles different size, shape, and composition: applications in biological imaging and biomedicine. J. Phys. Chem. B 110: 7238–7248. https://doi.org/10.1021/jp057170o.

79 79 Calvo, P., Remuoon‐Lopez, C., Vila‐Jato, J.L., and Alonso, M.J. (1997). Novel hydrophilic chitosan‐polyethylene oxide nanoparticles as protein carriers. J. Appl. Polym. Sci. 63: 125–132. https://doi.org/10.1002/(SICI)1097-4628(19970103)63:1*125::AID-APP13*3.0.CO;2-4.

80 80 Laurent, S., Forge, D., Port, M. et al. (2010). Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 110: 2064–2110. https://doi.org/10.1021/cr900197g.

81 81 Zhang, J. and Saltzman, M. (2013). Engineering biodegradable nanoparticles for drug and gene delivery. Chem. Eng. Prog. 109: 25–30.

82 82 Prashant, K.J. and Ivan, H.S. (2007). Au NPs target cancer. Nano Today 2: 19–29.

83 83 Chen, C., Xing, G., Wang, J. et al. (2005). Multihydroxylated [Gd@C82(OH)22]n nanoparticles: antineoplastic activity of high efficiency and low toxicity. Nano Lett. 5: 2050–2057. https://doi.org/10.1021/nl051624b.

84 84 AshaRani, P.V., Low Kah Mun, G., Hande, M.P., and Valiyaveettil, S. (2009). Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3: 279–290. https://doi.org/10.1021/nn800596w.

85 85 Hajipour, M.J., Fromm, K.M., Ashkarran, A.A. et al. (2012). Antibacterial properties of nanoparticles. Trends Biotechnol. 30: 499–511. https://doi.org/10.1016/j.tibtech.2012.06.004.

86 86 Yin, Q., Wu, W., Qiao, R. et al. (2016). Glucose assisted transformation of Ni‐doped‐ZnO@carbon to a Ni‐dopedZnO@void@SiO2 core–shell nanocomposite photocatalyst. RSC Adv. 6: 38653–38661. https://doi.org/10.1039/C5RA26631A.

87 87 Todescato, F., Fortunati, I., Minotto, A. et al. (2016). Engineering of semiconductor nanocrystals for light‐emitting applications. Materials 9: 672. https://doi.org/10.3390/ma9080672.

88 88 Weiss, J., Takhistov, P., and McClements, D.J. (2006). Functional materials in food nanotechnology. J. Food Sci. 71: R107–R116. https://doi.org/10.1111/j.1750-3841.2006.00195.x.

89 89 Lei, Y.‐M., Huang, W.‐X., Zhao, M. et al. (2015). Electrochemiluminescence resonance energy transfer system: mechanism and application in ratiometric aptasensor for lead ion. Anal. Chem. 87: 7787–7794. https://doi.org/10.1021/acs.analchem.5b01445.

90 90 Unser, S., Bruzas, I., He, J., and Sagle, L. (2015). Localized surface plasmon resonance biosensing: current challenges and approaches. Sensors 15: 15684–15716. https://doi.org/10.3390/s150715684.

91 91 Ripp, S. and Henry, T.B. (eds.) (2011). Biotechnology and Nanotechnology Risk Assessment: Minding and Managing the Potential Threats Around Us, ACS Symposium Series. Washington, DC: American Chemical Society http://dx.doi.org/10.1021/bk-2011-1079.

92 92 Golobič, M., Jemec, A., Drobne, D. et al. (2012). Upon exposure to Cu nanoparticles, accumulation of copper in the isopod Porcellio scaber is due to the dissolved Cu ions inside the digestive tract. Environ. Sci. Technol. 46: 12112–12119. https://doi.org/10.1021/es3022182.

93 93 Swadeshmukul, S., Peng, Z., Kemin, W. et al. (2001). Conjugation of biomolecules with luminophore‐doped silica nanoparticles for photostable biomarkers. Anal. Chem. 73: 4988–4993. https://doi.org/10.1021/AC010406+.

94 94 Tratnyek, P.G. and Johnson, R.L. (2006). Nanotechnologies for environmental cleanup. Nano Today 1: 44–48. https://doi.org/10.1016/S1748-0132(06)70048-2.

95 95 Mueller, N.C. and Nowack, B. (2008). Exposure modeling of engineered nanoparticles in the environment. Environ. Sci. Technol. 42: 4447–4453. https://doi.org/10.1021/es7029637.

96 96 Rogozea, E.A., Petcu, A.R., Olteanu, N.L. et al. (2017). Tandem adsorption‐photodegradation activity induced by light on NiO‐ZnO p–n couple modified silica nanomaterials. Mater. Sci. Semicond. Process. 57: 1–11. https://doi.org/10.1016/j.mssp.2016.10.006.

97 97 Rogozea, E.A., Olteanu, N.L., Petcu, A.R. et al. (2016). Extension of optical properties of ZnO/SiO2 materials induced by incorporation of Au or NiO nanoparticles. Opt. Mater. 56: 45–48. https://doi.org/10.1016/j.optmat.2015.12.020.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Nano-Technological Intervention in Agricultural Productivity»

Представляем Вашему вниманию похожие книги на «Nano-Technological Intervention in Agricultural Productivity» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Nano-Technological Intervention in Agricultural Productivity»

Обсуждение, отзывы о книге «Nano-Technological Intervention in Agricultural Productivity» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x