Javid A. Parray - Nano-Technological Intervention in Agricultural Productivity

Здесь есть возможность читать онлайн «Javid A. Parray - Nano-Technological Intervention in Agricultural Productivity» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Nano-Technological Intervention in Agricultural Productivity: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Nano-Technological Intervention in Agricultural Productivity»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Provides detailed information about the use of nanotechnology in remediating waste and pollution in agriculture  Nano-Technological Intervention in Agricultural Productivity Organized into nine chapters, the book opens with a thorough overview of the functions, classification, properties, synthesis, and applications of nanoparticles. Following a discussion of the environmental and agricultural implications of nanotechnology, the authors examine the current role and future prospects of nanotechnology in managing plant diseases, improving agri-food production, and increasing agricultural productivity. Subsequent chapters cover lignin nanoparticles, various applications of nanotechnology in agriculture, and nano-based advances in plant and microbial science. Offering an up-to-date account of the role of nanotechnologies in agricultural bioremediation, this book: 
Explores biotechnological advances in the development of sophisticated green technologies for waste minimization and waste control Emphasizes the use of microbes for degradation and removal of various xenobiotic substances Discusses bioremediation approaches in relation to the impact of increased urbanization and industrialization on the environment Covers a variety of applications of nanotechnology in agriculture, including nano-fertilizers, nano-biosensors, nano-pesticides, and nanoparticle protection in plants 
 is a valuable resource for students in plant biotechnology and agricultural science and engineering, as well as an important reference for researchers in plant biotechnology and agricultural sciences, particularly those with interest in the use of nanomaterials for pollution remediation and sustainable development.

Nano-Technological Intervention in Agricultural Productivity — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Nano-Technological Intervention in Agricultural Productivity», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

References

1 1 Yang, L. and Watts, D.J. (2005). Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol. Lett. 158 (2): 122–132.

2 2 Kovochich, M., Xia, T., Xu, J. et al. (2005). Principles and procedures to assess nanoparticles. Environ. Sci. Technol. 39 (5): 1250–1256.

3 3 Sayes, C.M., Fortner, J.D., Guo, W. et al. (2004). The differential cytotoxicity of water‐soluble fullerenes. Nano Lett. 4 (10): 1881–1887.

4 4 Daroczi, B., Kari, G., McAleer, M.F. et al. (2006). In vivo radioprotection by the fullerene nanoparticle DF‐1 as assessed in a zebrafish model. Clin. Cancer Res. 12 (23): 7086–7091.

5 5 Hoffmann, M., Holtze, E.M., and Wiesner, M.R. (2007). Reactive oxygen species generation on nanoparticulate material. In: Environmental Nanotechnology: Applications and Impacts of Nanomaterials (eds. M.R. Wiesner and J.Y. Bottero), 155–203. New York: McGraw Hill.

6 6 Joner, E.J., Hartnik, T., and Amundsen, C.E. (2008). Environmental fate and ecotoxicity of engineered nanoparticles. In: Norwegian Pollution Control Authority Report No. TA 2304/2007 (eds. E.J. Joner, T. Hartnik and C.E. Amundsen), 1–64. Norway: Bioforsk.

7 7 Lyon, D.Y., Thill, A., Rose, J., and Alvarez, P.J.J. (2007). Ecotoxicological impacts of nanomaterials. In: Environmental Nanotechnology: Applications and Impacts of Nanomaterials (eds. M.R. Wiesner and J.Y. Bottero), 445–479. New York: McGraw Hill.

8 8 Abbott, L.C. and Maynard, A.D. (2010). Exposure assessment approaches for engineered nanomaterials. Risk Anal. 30 (11): 1634–1644.

9 9 Maynard, A.D. (2007). Nanotechnology: the next big thing, or much ado about nothing? Ann. Occup. Hyg. 51 (1): 1–12.

10 10 Schulenburg, M. (2008). Nanoparticles – Small Things, Big Effects Opportunities and Risks. Berlin: Federal Ministry of Education and Research.

11 11 Bottero, J.Y., Rose, J., and Wiesner, M.R. (2006). Nanotechnologies: tools for sustainability in a new wave of water treatment processes. Integr. Environ. Assess. Manage. 2 (4): 391–395.

12 12 Macanas, J., Ruiz, P., Alonso, A. et al. (2011). Ion‐exchange assisted synthesis of polymer‐stabilized metal nanoparticles. In: Solvent Extraction and Ion Exchange: A Series of Advances, vol. 20 (ed. S.G. AK), 1–43. Boca Raton, FL: CRC Press‐Taylor & Francis Group.

13 13 Vatta, L.L., Sanderson, R.D., and Koch, K.R. (2006). Magnetic nanoparticles: properties and potential applications. Pure Appl. Chem. 78 (9): 1793–1801.

14 14 Belotelov, V.I., Perlo, P., and Zvezdin, A.K. (2005). Magneto optics of granular materials and new optical methods of magnetic nanoparticles and nanostructures imaging. In: Metal‐Polymer Nanocomposites, vol. 8 (eds. L. Nicolais and G. Carotenuto), 201–240. New York: Wiley.

15 15 Qiao, R., Zhang, X.L., Qiu, R. et al. (2007). Fabrication of superparamagnetic cobalt nanoparticles‐embedded block copolymer microcapsules. J. Phys. Chem. C 111 (6): 2426–2429.

16 16 Oberdorster, E. (2004). Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ. Health Perspect. 112 (10): 1058–1062.

17 17 Fortner, J.D., Lyon, D.Y., Sayes, C.M. et al. (2005). C60 in water: nanocrystal formation and microbial response. Environ. Sci. Technol. 39 (11): 4307–4316.

18 18 Wiesner, M.R., Lowry, G.V., Alvarez, P. et al. (2006). Assessing the risks of manufactured nanomaterials. Environ. Sci. Technol. 40 (14): 4336–4345.

19 19 Tang, Y.J., Ashcroft, J.M., Chen, D. et al. (2007). Charge‐associated effects of fullerene derivatives on microbial structural integrity and central metabolism. Nano Lett. 7 (3): 754–760.

20 20 Zhu, X., Zhu, L., Li, Y. et al. (2007). Developmental toxicity in zebrafish (Danio rerio) embryos after exposure to manufactured nanomaterials: buckminsterfullerene aggregates (nC60) and fullerol. Environ. Toxicol. Chem. 26 (5): 976–979.

21 21 Cheng, J., Flahaut, E., and Shuk, H.C. (2007). Effect of carbon nanotubes on developing zebrafish (Danio rerio) embryos. Environ. Toxicol. Chem. 26 (4): 708–716.

22 22 Smith, C.J., Shaw, B.J., and Handy, R.D. (2007). Toxicity of single walled carbon nanotubes to rainbow trout, (Oncorhynchus mykiss): respiratory toxicity, organ pathologies, and other physiological effects. Aquat. Toxicol. 82 (2): 94–109.

23 23 Roberts, A.P., Mount, A.S., and Seda, B. (2007). In vivo biomodification of lipid‐coated carbon nanotubes by Daphnia magna. Environ. Sci. Technol. 41 (8): 3028–3029.

24 24 Oberdorster, E., Zhu, S., Blickley, T.M. et al. (2006). Ecotoxicology of carbon‐based engineered nanoparticles: effects of fullerene (C60) on aquatic organisms. Carbon 44 (6): 1112–1120.

25 25 Panyala, N.R., Pena‐Mendez, E.M., and Havel, J. (2008). Silver or silver nanoparticles: a hazardous threat to the environment and human health. J. Appl. Biomed. 6 (3): 117–129.

26 26 Rana, S. and Kalaichelvan, P.T. (2011). Antibacterial effects of metal nanoparticles. Adv. Biotech 2 (2): 21–23.

27 27 Griffitt, R.J., Weil, R., Hyndman, K.A. et al. (2007). Exposure to copper nanoparticles causes gill injury and acute lethality in zebrafish (Danio rerio). Environ. Sci. Technol. 41 (23): 8178–8186.

28 28 Cioffi, N., Ditaranto, N., Torsi, L. et al. (2005). Synthesis, analytical characterization and bioactivity of Ag and Cu nanoparticles embedded in poly‐vinyl‐methyl‐ketone films. Anal. Bioanal. Chem. 382 (8): 1912–1918.

29 29 Pan, Y., Neuss, S., Leifert, A. et al. (2007). Size‐dependent cytotoxicity of gold nanoparticles. Small 3 (11): 1941–1949.

30 30 Braydich‐Stolle, L., Hussain, S., Schlager, J.J., and Hofmann, M.C. (2005). In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol. Sci. 88 (2): 412–419.

31 31 Hussain, S.M., Javorina, A.K., Schrand, A.M. et al. (2006). The interaction of manganese nanoparticles with PC‐12 cells induces dopamine depletion. Toxicol. Sci. 92 (2): 456–463.

32 32 Chen, X. and Schluesener, H.J. (2008). Nanosilver: a nanoproduct in medical application. Toxicol. Lett. 176 (1): 1–12.

33 33 Hogstrand, C. and Wood, C.M. The toxicity of silver to marine fish. In: Proceedings of the 4th International Conference on Transport, Fate and Effects of Silver in the Environment (eds. A.W. Andren and T.W. Bober), 109–112. Lexington Kentucky, USA: University of Kentucky; McMaster University, Hamilton,Ontario,Canada.

34 34 Eisler, R. (1996). A review of silver hazards to plants and animals. In: Proceedings of the 4th International Conference on Transport Fate and Effects of Silver in the Environment (eds. A.W. Andren and T.W. Bober), 143–144. Madison, WI: University of Vasconia sea giant institute Madison.

35 35 Throback, I.N., Johansson, M., Rosenquist, M. et al. (2007). Silver (Ag+) reduces denitrification and induces enrichment of novel nirK genotypes in soil. FEMS Microbiol. Lett. 270 (2): 189–194. Madison, WI: Sea Grant Institute.

36 36 Wood, C.M., Playle, R.C., and Hogstrand, C. (1999). Physiology and modelling of mechanisms of silver uptake and toxicity in fish. Environ. Toxicol. Chem. 1 (18): 71–83.

37 37 Ajayan, P.M., Schadler, L.S., and Braun, L.S. (2006). Nanocomposite Science and Technology. New York: Wiley.

38 38 Kim, J. and Bruggen, B.V. (2010). The use of nanoparticles in polymeric and ceramic membrane structures: review of manufacturing procedures and performance improvement for water treatment. Environ. Pollut. 158 (7): 2335–2349.

39 39 Rozenberg, B.A. and Tenne, R. (2008). Polymer‐assisted fabrication of nanoparticles and nanocomposites. Prog. Polym. Sci. 33 (1): 40–112.

40 40 Pomogailo, A.D. (2005). Polymer sol‐gel synthesis of hybrid nanocomposites. Colloid J. 67 (6): 658–677.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Nano-Technological Intervention in Agricultural Productivity»

Представляем Вашему вниманию похожие книги на «Nano-Technological Intervention in Agricultural Productivity» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Nano-Technological Intervention in Agricultural Productivity»

Обсуждение, отзывы о книге «Nano-Technological Intervention in Agricultural Productivity» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x