Rajender Boddula - Fundamentals of Solar Cell Design

Здесь есть возможность читать онлайн «Rajender Boddula - Fundamentals of Solar Cell Design» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Fundamentals of Solar Cell Design: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Fundamentals of Solar Cell Design»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Solar cells are semiconductor devices that convert light photons into electricity in photovoltaic energy conversion and can help to overcome the global energy crisis. Solar cells have many applications including remote area power systems, earth-orbiting satellites, wristwatches, water pumping, photodetectors and remote radiotelephones. Solar cell technology is economically feasible for commercial-scale power generation. While commercial solar cells exhibit good performance and stability, still researchers are looking at many ways to improve the performance and cost of solar cells via modulating the fundamental properties of semiconductors. Solar cell technology is the key to a clean energy future. Solar cells directly harvest energy from the sun’s light radiation into electricity are in an ever-growing demand for future global energy production.
Solar cell-based energy harvesting has attracted worldwide attention for their notable features, such as cheap renewable technology, scalable, lightweight, flexibility, versatility, no greenhouse gas emission, environment, and economy friendly and operational costs are quite low compared to other forms of power generation. Thus, solar cell technology is at the forefront of renewable energy technologies which are used in telecommunications, power plants, small devices to satellites. Aiming at large-scale implementation can be manipulated by various types used in solar cell design and exploration of new materials towards improving performance and reducing cost. Therefore, in-depth knowledge about solar cell design is fundamental for those who wish to apply this knowledge and understanding in industries and academics.
This book provides a comprehensive overview on solar cells and explores the history to evolution and present scenarios of solar cell design, classification, properties, various semiconductor materials, thin films, wafer-scale, transparent solar cells, and so on. It also includes solar cells’ characterization analytical tools, theoretical modeling, practices to enhance conversion efficiencies, applications and patents.

Fundamentals of Solar Cell Design — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Fundamentals of Solar Cell Design», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Figure 2.6 The device configuration of (a) direct and (b) plasmonic enhanced plasmonic solar cell and (c) plasmonic DSSC.

Figure 27 Efficiency for various plasmonic solar cell technology Table 23 - фото 55

Figure 2.7 Efficiency for various plasmonic solar cell technology.

Table 2.3 Effect of various plasmonic nanostructures on solar cell technologies.

Solar cell technology Plasmonic nanostructure Mechanism Efficiency (%) Reference
Hot carrier cell Au@TiO 2/PEDOT Direct plasmonic transparent active layer 0.2 [46] 2019
Au Direct plasmonic as active layer 24 [59] Wu, 2013
Silicon Ag with diameter 14-100 nm At top surface 26 [27] Atwater HA, 2010 et al ., 2010
Al At top of surface 14.5 [53] 2013
Au At top of surface 14 [115] Jacak, 2018
Ag At top of surface 12.8 [115] Jacak, 2018
GaAs Ag At top of surface 22.15 [94] 2019
Ag At top surface 5.9 [51] 2008
CIGS Au At top surface 4 [61] Londhe, 2016
Ag At top surface 9.44 [115] Jacak, 2018
Au At top surface 10.34 [115] Jacak, 2018
CdTe Au At top surface 9 [62] Kim, 2015
CZTS Au At back surface 9 [64] Omar, 2018
DSSC Ag Embedded with TiO 2 3.62 [85] 2017
Au (15 nm) Embedded with TiO 2 4.46 [73] 2014
PEC Au@TiO 2 Emdded with TiO 2for oxygen evolution 40 (H atom per electron) [88] 2012
Quantum dot Ag@PdS At top surface 6.03 [114] Kawawaki, 2015
Au@PbS At top surface 9.58 [81] Chen, 2018
CdS@GaAs At top surface 18.9 [82] Lin, 2012
Perovskites Ag At top surface 13.46 [107] Aliaksandr, 2018
Ag@TiO 2 Embedded with TiO 2 16.3 [113] Saliba, 2015
Au@coreshell Embedded with core-shell structure 19.42 [87] 2020
Hybrid plasmonic Au@AuQD:organic At top surface 13 [83] Phetsang, 2019
Ag@TiO 2@Pa Embedded with core-shell structure 20.2 [86] 2019
Au@ZnO:OEC Embedded 10.5 [89] 2016

2.4.2 Plasmonic-Enhanced Solar Cell

They are considered as simple plasmonic solar cells. The crystalline or amorphous silicon and thin film solar cells can be developed using SPR of metal nanoparticles. The plasmonic nanostructure can act as light harvesting antennas to enhance optical path length of photon through scattering that resulting in enhanced absorption and generation of e-h pairs in semiconductors [50]. For example, deposition of Au, Ag, or Cu metal nanoparticle array in Si/SiO 2device increases 20 times more photocurrent in plasmonic solar cell. The various solar cell technologies such as conventional silicon, GaAs, CIGS, CdTe, and CZTS have been demonstrated using plasmonic nanostructures with improved efficiency. By making stacks of thin film PV cell, the multi-wavelength light can be absorbed in plasmonic solar cells through enhanced scattering [51–53].

2.4.3 Plasmonic Thin Film Solar Cells

Plasmonic thin film designs in solar cells improve the absorption using SPR. This enhancement is mainly because of the manipulation of light for getting desired circulation, absorption, and scattering. The very thin photo active layer upto 100 nm has been proved theoretically. They can use cheaper substrate than silicon such as plastic, steel, or glass [54].

The arrays of metal nanostructures at top of GaAs solar cell have been demonstrated and achieved enhanced performance in near-IR region [55]. The silver metal nanoparticle based plasmonic GaAs solar cells have shown 8% increment in short circuit current and achieved 5.9% efficiency. The plasmonic nanoparticles have the potential to make thinner PV layers with enhanced performance.

Integrating plasmonic nanostructures with silicon solar cells can significantly enhance the absorption in visible as well as near-IR spectrum. Green et al . have demonstrated the enhanced absorption in silicon thin film PV cells using Ag plasmonic nanoparticles [52]. Yang et al . have demonstrated monocrystalline silicon solar cells with effect of plasmon resonance on silicon nanowire decorated with Ag metal nanoparticles [53]. Yue et al . have demonstrated 15% enhancement in absorption by using plasmonic core-shell (the dielectric as core and metal as shell) insulators for a-Si solar cells [54]. Atwater et al . have demonstrated amorphous Si PV device with about 26% efficiency by usage of plasmonic nanostructure [59]. This device configuration has improved the electrical properties of the PV cells. Zhang et al . have fabricated plasmonic solar cell with about 18.2% efficiency using advanced light trapping approach in a proper device design, which has reduced the wafer thickness without loss in energy conversion [53]. Derkacs et al . have demonstrated 8.3% energy conversion efficiency with gold nanoparticles on thin film silicon [57]. Stuart and Hall et al. have achieved enhanced photocurrent by a factor of 18- at 800-nm wavelength in 165 nm thick Si/insulator with silver metal nanoparticles at the top surface of PV cell [56]. Schaadt et al . have shown the improvements in silicon solar cells by 80% at 500-nm wavelength using gold nanoparticles at top of surface [58]. Pillai et al . have shown the increment in photocurrent by 19%–33% using Ag plasmonic nanoparticles [52]. Singh and Verma et al . have used fabricated silicon plasmonic solar cell using copper plasmonic nanoparticles [65]. The mc-Si PV devices also have been shown using Al metal nanoparticles as antireflection coating (ARC) on top surface. This configuration has achieved the solar cell parameters such as 34.0 mA/ cm 2short circuit current (I sc) and efficiency of 14.5% [66]. Lian et al . have reported on the loss of hot electrons [59]. There is a need of quality research to develop plasmonic silicon solar cells for commercial applications.

CIGS and CdTe PV cells have fabricated using Ag and Au plasmonic nanoparticles and achieved conversion efficiencies of about 10.34% and 9%, respectively [68, 69]. The research interest in CZTS has been increased due to its low cost, non-toxic and earth abundant elements. These results could open a new way of integrating plasmonic nanostructure with existing PV devices for higher efficiency. A layer of Au plasmonic nanostructure in CZTS has shown enhancement in light trapping and efficiency. CZTS solar cells with integration of plasmonic nanostructures as ARC coatings are promising to decrease reflection and for increasing absorption for increasing its efficiency at commercial scale applications [70, 71].

2.4.4 Plasmonic Dye Sensitized Solar Cells (PDSSCs)

PDSSC with plasmonic Au nanoparticles embedded in TiO 2has shown 26% efficiency [73]. There are interesting mechanisms that are responsible for enhancing conversion of metal oxide semiconductor (MOS)–based solar cells using metal nanostructures. These mechanisms include the increment in photocurrent by local electric field enhancement and amplification of the electric field near semiconductor surfaces by surface plasmons [74]. The plasmonic DSSC with hematite coated on Au nanopillars and N719 dye has shown enhanced absorption in visible range and efficiency of 10.2% [75]. Chander et al . have developed plasmonic DSSC with Au nanoparticle embedded with TiO 2thin film with enhanced absorption in visible range and energy conversion efficiency of 4.46% [73].

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Fundamentals of Solar Cell Design»

Представляем Вашему вниманию похожие книги на «Fundamentals of Solar Cell Design» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Fundamentals of Solar Cell Design»

Обсуждение, отзывы о книге «Fundamentals of Solar Cell Design» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x