Biofuel Cells

Здесь есть возможность читать онлайн «Biofuel Cells» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Biofuel Cells: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Biofuel Cells»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Rapid industrialization and urbanization associated with the environment changes calls for reduced pollution and thereby least use of fossil fuels. Biofuel cells are bioenergy resources and biocompatible alternatives to conventional fuel cells. Biofuel cells are one of the new sustainable renewable energy sources that are based on the direct conversion of chemical matters to electricity with the aid of microorganisms or enzymes as biocatalysts. The gradual depletion of fossil fuels, increasing energy needs, and the pressing problem of environmental pollution have stimulated a wide range of research and development efforts for renewable and environmentally friendly energy. Energy generation from biomass resources by employing biofuel cells is crucial for sustainable development. Biofuel cells have attracted considerable attention as micro- or even nano-power sources for implantable biomedical devices, such as cardiac pacemakers, implantable self-powered sensors, and biosensors for monitoring physiological parameters.
This book covers the most recent developments and offers a detailed overview of fundamentals, principles, mechanisms, properties, optimizing parameters, analytical characterization tools, various types of biofuel cells, all-category of materials, catalysts, engineering architectures, implantable biofuel cells, applications and novel innovations and challenges in this sector. This book is a reference guide for anyone working in the areas of energy and the environment.

Biofuel Cells — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Biofuel Cells», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

143. Tran, T.O., Lammert, E.G., Chen, J., Merchant, S.A., et al ., Incorporation of Single-Walled Carbon Nanotubes into Ferrocene-Modified Linear Polyethylenimine Redox Polymer Films. Langmuir , 27 , 6201–6210, 2011.

144. Godman, N.P., DeLuca, J.L., McCollum, S.R., Schmidtke, D.W., Glatzhofer, D.T., Electrochemical Characterization of Layer-By-Layer Assembled Ferrocene-Modified Linear Poly(ethylenimine)/Enzyme Bioanodes for Glucose Sensor and Biofuel Cell Applications. Langmuir , 32 , 3541–3551, 2016.

145. González-Guerrero, M.J., del Campo, F.J., Esquivel, J.P., Giroud, F., et al ., Paper-based enzymatic microfluidic fuel cell: From a two-stream flow device to a single-stream lateral flow strip. J. Power Sources , 326 , 410–416, 2016.

146. Hickey, D.P., Reid, R.C., Milton, R.D., Minteer, S.D., A self-powered amperometric lactate biosensor based on lactate oxidase immobilized in dimethyl-ferrocene-modified LPEI. Biosens. Bioelectron ., 77 , 26–31, 2016.

147. Hickey, D.P., Ferrocene-Modified Linear Poly(ethylenimine) for Enzymatic Immobilization and Electron Mediation, in: Minteer, S.D. (Ed.), Enzyme Stabilization and Immobilization: Methods and Protocols , pp. 181–191, Springer, New York, 2017.

148. Escalona-Villalpando, R.A., Reid, R.C., Milton, R.D., Arriaga, L.G., et al ., Improving the performance of lactate/oxygen biofuel cells using a microfluidic design. J. Power Sources , 342 , 546–552, 2017.

149. Miyawaki, O., Wingard, L.B., Electrochemical and glucose oxidase coenzyme activity of flavin adenine dinucleotide covalently attached to glassy carbon at the adenine amino group. Biochim. Biophys. Acta (BBA)—General Subjects , 838 , 60–68, 1985.

150. Guiseppi-Elie, A., Lei, C., Baughman, R.H., Direct electron transfer of glucose oxidase on carbon nanotubes. Nanotechnol ., 13 , 559–564, 2002.

151. Ishida, K., Orihara, K., Muguruma, H., Iwasa, H., et al ., Comparison of Direct and Mediated Electron Transfer in Electrodes with Novel Fungal Flavin Adenine Dinucleotide Glucose Dehydrogenase. Anal. Sci ., 34 , 783–787, 2018.

152. Lovley, D.R., Anaerobes into heavy-metal–dissimilatory metal reduction in anoxic environments. Trends Ecol. Evol ., 8 , 213–217, 1993.

153. Lovley, D.R., Extracellular electron transfer: wires, capacitors, iron lungs, and more. Geobiol ., 6 , 225–231, 2008.

154. Zacharoff, L., Chan, C.H., Bond, D.R., Reduction of low potential electron acceptors requires the CbcL inner membrane cytochrome of Geobacter sulfurreducens . Bioelectrochem ., 107 , 7–13, 2016.

155. Morgado, L., Bruix, M., Pessanha, M., Londer, Y.Y., Salgueiro, C.A., Thermodynamic Characterization of a Triheme Cytochrome Family from Geobacter sulfurreducens Reveals Mechanistic and Functional Diversity. Biophys. J ., l , 99 , 293–301, 2010.

156. Liu, Y.M., Fredrickson, J.K., Zachara, J.M., Shi, L., Direct involvement of OmbB, OmaB, and OmcB genes in extracellular reduction of Fe(III) by Geobacter sulfurreducens PCA. Front. Microbiol ., 6 , 2015.

157. Vellingiri, A., Song, Y.E., Munussami, G., Kim, C., et al ., Overexpression of c-type cytochrome, CymA in S hewanella oneidensis MR-1 for enhanced bioelectricity generation and cell growth in a microbial fuel cell. J. Chem. Technol. Biotechnol ., 94 , 2115–2122, 2019.

158. Alves, A.S., Costa, N.L., Tien, M., Louro, R.O., Paquete, C.M., Modulation of the reactivity of multiheme cytochromes by site-directed mutagenesis: moving towards the optimization of microbial electrochemical technologies. J. Biol. Inorg. Chem ., 22 , 87–97, 2017.

159. Alves, M.N., Neto, S.E., Alves, A.S., Fonseca, B.M., et al ., Characterization of the periplasmic redox network that sustains the versatile anaerobic metabolism of Shewanella oneidensis MR-1. Front. Microbiol ., 6 , 2015.

160. Costa, N.L., Clarke, T.A., Philipp, L.A., Gescher, J., et al ., Electron transfer process in microbial electrochemical technologies: The role of cell-surface exposed conductive proteins. Bioresour. Technol ., 255 , 308–317, 2018.

161. Xiao, K., Malvankar, N.S., Shu, C.J., Martz, E., et al ., Low Energy Atomic Models Suggesting a Pilus Structure that could Account for Electrical Conductivity of Geobacter sulfurreducens Pili. Scientific Reports , 6 , 2016.

162. Holmes, D.E., Dang, Y., Walker, D.J.F., Lovley, D.R., The electrically conductive pili of Geobacter species are a recently evolved feature for extracellular electron transfer. Microb. Genomics , 2 , 2016.

163. Torres, C.I., Marcus, A.K., Lee, H.S., Parameswaran, P., et al ., A kinetic perspective on extracellular electron transfer by anode-respiring bacteria. Fems Microbiol. Rev ., 34 , 3–17, 2010.

164. Hagos, K., Liu, C., Lu, X.H., Effect of endogenous hydrogen utilization on improved methane production in an integrated microbial electrolysis cell and anaerobic digestion: Employing catalyzed stainless steel mesh cathode. Chin. J. Chem. Eng ., 26 , 574–582, 2018.

165. Milton, R.D., Giroud, F., Thumser, A.E., Minteer, S.D., Slade, R.C.T., Bilirubin oxidase bioelectrocatalytic cathodes: the impact of hydrogen peroxide. Chem. Comm ., 50 , 94–96, 2014.

166. Zebda, A., Renaud, L., Cretin, M., Innocent, C., et al ., Membrane less microchannel glucose biofuel cell with improved electrical performances. Sens Actuators B-Chem ., 149 , 44–50, 2010.

167. Kim, H., Lee, I., Kwon, Y., Kim, B. C., et al ., Immobilization of glucose oxidase into polyaniline nanofiber matrix for biofuel cell applications. Biosens. Bioelectron ., 26 , 3908–3913, 2011.

168. Ortiz-Ortega, E., Goulet, M.-A., Lee, J.W., Guerra-Balcázar, M., et al ., A nanofluidic direct formic acid fuel cell with a combined flow-through and air-breathing electrode for high performance. Lab on a Chip , 14 , 4596–4598, 2014.

169. Gellett, W., Schumacher, J., Kesmez, M., Le, D., Minteer, S.D., High Current Density Air-Breathing Laccase Biocathode. J. Electrochem. Soc ., 157 , B557, 2010.

170. Jayashree, R.S., Gancs, L., Choban, E.R., Primak, A., et al ., Air-Breathing Laminar Flow-Based Microfluidic Fuel Cell. J. Amer. Chem. Soc ., 127 , 16758–16759, 2005.

171. Jiang, Y., Su, M., Zhang, Y., Zhan, G.Q., et al ., Bioelectrochemical systems for simultaneously production of methane and acetate from carbon dioxide at relatively high rate. Int. J. Hydrogen Energy , 38 , 3497–3502, 2013.

172. Siegert, M., Yates, M.D., Call, D.F., Zhu, X.P., et al ., Comparison of Nonprecious Metal Cathode Materials for Methane Production by Electromethanogenesis. ACS Sustainable Chem. Eng ., 2 , 910–917, 2014.

173. Zhang, Z.Y., Song, Y., Zheng, S.J., Zhen, G.Y., et al ., Electro-conversion of carbon dioxide (CO 2) to low-carbon methane by bioelectromethanogenesis process in microbial electrolysis cells: The current status and future perspective. Bioresour. Technol ., 279 , 339–349, 2019.

174. Nie, H.R., Zhang, T., Cui, M.M., Lu, H.Y., et al ., Improved cathode for high efficient microbial-catalyzed reduction in microbial electrosynthesis cells. Phys. Chem. Chem. Phys ., 15 , 14290–14294, 2013.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Biofuel Cells»

Представляем Вашему вниманию похожие книги на «Biofuel Cells» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Biofuel Cells»

Обсуждение, отзывы о книге «Biofuel Cells» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x