143. Tran, T.O., Lammert, E.G., Chen, J., Merchant, S.A., et al ., Incorporation of Single-Walled Carbon Nanotubes into Ferrocene-Modified Linear Polyethylenimine Redox Polymer Films. Langmuir , 27 , 6201–6210, 2011.
144. Godman, N.P., DeLuca, J.L., McCollum, S.R., Schmidtke, D.W., Glatzhofer, D.T., Electrochemical Characterization of Layer-By-Layer Assembled Ferrocene-Modified Linear Poly(ethylenimine)/Enzyme Bioanodes for Glucose Sensor and Biofuel Cell Applications. Langmuir , 32 , 3541–3551, 2016.
145. González-Guerrero, M.J., del Campo, F.J., Esquivel, J.P., Giroud, F., et al ., Paper-based enzymatic microfluidic fuel cell: From a two-stream flow device to a single-stream lateral flow strip. J. Power Sources , 326 , 410–416, 2016.
146. Hickey, D.P., Reid, R.C., Milton, R.D., Minteer, S.D., A self-powered amperometric lactate biosensor based on lactate oxidase immobilized in dimethyl-ferrocene-modified LPEI. Biosens. Bioelectron ., 77 , 26–31, 2016.
147. Hickey, D.P., Ferrocene-Modified Linear Poly(ethylenimine) for Enzymatic Immobilization and Electron Mediation, in: Minteer, S.D. (Ed.), Enzyme Stabilization and Immobilization: Methods and Protocols , pp. 181–191, Springer, New York, 2017.
148. Escalona-Villalpando, R.A., Reid, R.C., Milton, R.D., Arriaga, L.G., et al ., Improving the performance of lactate/oxygen biofuel cells using a microfluidic design. J. Power Sources , 342 , 546–552, 2017.
149. Miyawaki, O., Wingard, L.B., Electrochemical and glucose oxidase coenzyme activity of flavin adenine dinucleotide covalently attached to glassy carbon at the adenine amino group. Biochim. Biophys. Acta (BBA)—General Subjects , 838 , 60–68, 1985.
150. Guiseppi-Elie, A., Lei, C., Baughman, R.H., Direct electron transfer of glucose oxidase on carbon nanotubes. Nanotechnol ., 13 , 559–564, 2002.
151. Ishida, K., Orihara, K., Muguruma, H., Iwasa, H., et al ., Comparison of Direct and Mediated Electron Transfer in Electrodes with Novel Fungal Flavin Adenine Dinucleotide Glucose Dehydrogenase. Anal. Sci ., 34 , 783–787, 2018.
152. Lovley, D.R., Anaerobes into heavy-metal–dissimilatory metal reduction in anoxic environments. Trends Ecol. Evol ., 8 , 213–217, 1993.
153. Lovley, D.R., Extracellular electron transfer: wires, capacitors, iron lungs, and more. Geobiol ., 6 , 225–231, 2008.
154. Zacharoff, L., Chan, C.H., Bond, D.R., Reduction of low potential electron acceptors requires the CbcL inner membrane cytochrome of Geobacter sulfurreducens . Bioelectrochem ., 107 , 7–13, 2016.
155. Morgado, L., Bruix, M., Pessanha, M., Londer, Y.Y., Salgueiro, C.A., Thermodynamic Characterization of a Triheme Cytochrome Family from Geobacter sulfurreducens Reveals Mechanistic and Functional Diversity. Biophys. J ., l , 99 , 293–301, 2010.
156. Liu, Y.M., Fredrickson, J.K., Zachara, J.M., Shi, L., Direct involvement of OmbB, OmaB, and OmcB genes in extracellular reduction of Fe(III) by Geobacter sulfurreducens PCA. Front. Microbiol ., 6 , 2015.
157. Vellingiri, A., Song, Y.E., Munussami, G., Kim, C., et al ., Overexpression of c-type cytochrome, CymA in S hewanella oneidensis MR-1 for enhanced bioelectricity generation and cell growth in a microbial fuel cell. J. Chem. Technol. Biotechnol ., 94 , 2115–2122, 2019.
158. Alves, A.S., Costa, N.L., Tien, M., Louro, R.O., Paquete, C.M., Modulation of the reactivity of multiheme cytochromes by site-directed mutagenesis: moving towards the optimization of microbial electrochemical technologies. J. Biol. Inorg. Chem ., 22 , 87–97, 2017.
159. Alves, M.N., Neto, S.E., Alves, A.S., Fonseca, B.M., et al ., Characterization of the periplasmic redox network that sustains the versatile anaerobic metabolism of Shewanella oneidensis MR-1. Front. Microbiol ., 6 , 2015.
160. Costa, N.L., Clarke, T.A., Philipp, L.A., Gescher, J., et al ., Electron transfer process in microbial electrochemical technologies: The role of cell-surface exposed conductive proteins. Bioresour. Technol ., 255 , 308–317, 2018.
161. Xiao, K., Malvankar, N.S., Shu, C.J., Martz, E., et al ., Low Energy Atomic Models Suggesting a Pilus Structure that could Account for Electrical Conductivity of Geobacter sulfurreducens Pili. Scientific Reports , 6 , 2016.
162. Holmes, D.E., Dang, Y., Walker, D.J.F., Lovley, D.R., The electrically conductive pili of Geobacter species are a recently evolved feature for extracellular electron transfer. Microb. Genomics , 2 , 2016.
163. Torres, C.I., Marcus, A.K., Lee, H.S., Parameswaran, P., et al ., A kinetic perspective on extracellular electron transfer by anode-respiring bacteria. Fems Microbiol. Rev ., 34 , 3–17, 2010.
164. Hagos, K., Liu, C., Lu, X.H., Effect of endogenous hydrogen utilization on improved methane production in an integrated microbial electrolysis cell and anaerobic digestion: Employing catalyzed stainless steel mesh cathode. Chin. J. Chem. Eng ., 26 , 574–582, 2018.
165. Milton, R.D., Giroud, F., Thumser, A.E., Minteer, S.D., Slade, R.C.T., Bilirubin oxidase bioelectrocatalytic cathodes: the impact of hydrogen peroxide. Chem. Comm ., 50 , 94–96, 2014.
166. Zebda, A., Renaud, L., Cretin, M., Innocent, C., et al ., Membrane less microchannel glucose biofuel cell with improved electrical performances. Sens Actuators B-Chem ., 149 , 44–50, 2010.
167. Kim, H., Lee, I., Kwon, Y., Kim, B. C., et al ., Immobilization of glucose oxidase into polyaniline nanofiber matrix for biofuel cell applications. Biosens. Bioelectron ., 26 , 3908–3913, 2011.
168. Ortiz-Ortega, E., Goulet, M.-A., Lee, J.W., Guerra-Balcázar, M., et al ., A nanofluidic direct formic acid fuel cell with a combined flow-through and air-breathing electrode for high performance. Lab on a Chip , 14 , 4596–4598, 2014.
169. Gellett, W., Schumacher, J., Kesmez, M., Le, D., Minteer, S.D., High Current Density Air-Breathing Laccase Biocathode. J. Electrochem. Soc ., 157 , B557, 2010.
170. Jayashree, R.S., Gancs, L., Choban, E.R., Primak, A., et al ., Air-Breathing Laminar Flow-Based Microfluidic Fuel Cell. J. Amer. Chem. Soc ., 127 , 16758–16759, 2005.
171. Jiang, Y., Su, M., Zhang, Y., Zhan, G.Q., et al ., Bioelectrochemical systems for simultaneously production of methane and acetate from carbon dioxide at relatively high rate. Int. J. Hydrogen Energy , 38 , 3497–3502, 2013.
172. Siegert, M., Yates, M.D., Call, D.F., Zhu, X.P., et al ., Comparison of Nonprecious Metal Cathode Materials for Methane Production by Electromethanogenesis. ACS Sustainable Chem. Eng ., 2 , 910–917, 2014.
173. Zhang, Z.Y., Song, Y., Zheng, S.J., Zhen, G.Y., et al ., Electro-conversion of carbon dioxide (CO 2) to low-carbon methane by bioelectromethanogenesis process in microbial electrolysis cells: The current status and future perspective. Bioresour. Technol ., 279 , 339–349, 2019.
174. Nie, H.R., Zhang, T., Cui, M.M., Lu, H.Y., et al ., Improved cathode for high efficient microbial-catalyzed reduction in microbial electrosynthesis cells. Phys. Chem. Chem. Phys ., 15 , 14290–14294, 2013.
Читать дальше