108. Escalona-Villalpando, R.A., Hasan, K., Milton, R.D., Moreno-Zuria, A., et al ., Performance comparison of different configurations of Glucose/O2 microfluidic biofuel cell stack. J. Power Sources , 414 , 150–157, 2019.
109. Koushanpour, A., Gamella, M., Guz, N., Katz, E., A Biofuel Cell Based on Biocatalytic Reactions of Glucose on Both Anode and Cathode Electrodes. Electroanal ., 29 , 950–954, 2017.
110. Du, Y., Ma, F.-X., Xu, C.-Y., Yu, J., et al ., Nitrogen-doped carbon nanotubes/reduced graphene oxide nanosheet hybrids towards enhanced cathodic oxygen reduction and power generation of microbial fuel cells. Nano Energy , 61 , 533–539, 2019.
111. Zhong, K., Lu, X., Dai, Y., Yang, S., et al ., UiO66-NH 2as self-sacrificing template for Fe/N-doped hierarchically porous carbon with high electrochemical performance for oxygen reduction in microbial fuel cells. Electrochim. Acta , 323 , 134777, 2019.
112. Guan, Y.-F., Zhang, F., Huang, B.-C., Yu, H.-Q., Enhancing electricity generation of microbial fuel cell for wastewater treatment using nitrogen-doped carbon dots-supported carbon paper anode. J. Cleaner Prod ., 229 , 412–419, 2019.
113. Zhang, G., Zhou, Y., Yang, F., Hydrogen production from microbial fuel cells-ammonia electrolysis cell coupled system fed with landfill leachate using Mo 2C/N-doped graphene nanocomposite as HER catalyst. Electrochim. Acta , 299 , 672–681, 2019.
114. Guo, W., Chao, S., Chen, Q., Improved power generation using nitrogendoped 3D graphite foam anodes in microbial fuel cells. Bioprocess Biosys. Eng ., 43 , 143–151, 2020.
115. Li, G., Li, Z., Xiao, X., An, Y., et al ., Ultrahigh Electron-Donating Quaternary-N-Doped Reduced Graphene Oxide@Carbon Nanotubes Framework: A Covalently Coupled Catalyst Support for Enzymatic Bioelectrodes. J. Mater. Chem. A , 7 , 2019.
116. Yang, L., Zeng, X., Wang, W., Cao, D., Recent Progress in MOF-Derived, Heteroatom-Doped Porous Carbons as Highly Efficient Electrocatalysts for Oxygen Reduction Reaction in Fuel Cells. Adv. Funct. Mater ., 28 , 1704537, 2018.
117. Wang, H., Wei, L., Liu, J., Shen, J., Hollow bimetal ZIFs derived Cu/Co/N co-coordinated ORR electrocatalyst for microbial fuel cells. Int. J. Hydrogen Energy , 45 , 4481–4489, 2020.
118. Kaur, R., Marwaha, A., Chhabra, V.A., Kim, K.-H., Tripathi, S.K., Recent developments on functional nanomaterial-based electrodes for microbial fuel cells. Renewable and Sustainable Energy Rev ., 119 , 109551, 2020.
119. Zhong, K., Huang, L., Li, M., Dai, Y., et al ., Cobalt/nitrogen-Co-doped nanoscale hierarchically porous composites derived from octahedral metal–organic framework for efficient oxygen reduction in microbial fuel cells. Int. J. Hydrogen Energy , 44 , 30127–30140, 2019.
120. Wang, Y., Zhong, K., Huang, Z., Chen, L., et al ., Novel g-C 3N 4assisted metal organic frameworks derived high efficiency oxygen reduction catalyst in microbial fuel cells. J. Power Sources , 450 , 227681, 2020.
121. Xue, W., Zhou, Q., Li, F., Ondon, B.S., Zeolitic imidazolate framework-8 (ZIF-8) as robust catalyst for oxygen reduction reaction in microbial fuel cells. J. Power Sources , 423 , 9–17, 2019.
122. Yang, R., Li, K., Lv, C., Cen, B., Liang, B., The exceptional performance of polyhedral porous carbon embedded nitrogen-doped carbon networks as cathode catalyst in microbial fuel cells. J. Power Sources , 442 , 227229, 2019.
123. Luo, X., Han, W.L., Ren, H., Zhuang, Q.Z., Metallic Organic Framework-Derived Fe, N, S co-doped Carbon as a Robust Catalyst for the Oxygen Reduction Reaction in Microbial Fuel Cells. Energies , 12 , 2019.
124. Li, X., Li, D., Zhang, Y., Lv, P., et al ., Encapsulation of enzyme by metal–organic framework for single-enzymatic biofuel cell-based self-powered biosensor. Nano Energy , 68 , 104308, 2020.
125. Zhang, F., Wu, X., Gao, J., Chen, Y., et al ., Fabrications of metal organic frameworks derived hierarchical porous carbon on carbon nanotubes as efficient bioanode catalysts of NAD +-dependent alcohol dehydrogenase. Electrochim. Acta , 340 , 135958, 2020.
126. Hui, Y., Ma, X., Qu, F., Flexible glucose/oxygen enzymatic biofuel cells based on three-dimensional gold-coated nickel foam. J. Solid State Electrochem ., 23 , 169–178, 2019.
127. Niiyama, A., Murata, K., Shigemori, Y., Zebda, A., Tsujimura, S., High-performance enzymatic biofuel cell based on flexible carbon cloth modified with MgO-templated porous carbon. J. Power Sources , 427 , 49–55, 2019.
128. Shen, F., Pankratov, D., Halder, A., Xiao, X., et al ., Two-dimensional graphene paper supported flexible enzymatic fuel cells. Nanoscale Adv ., 1 , 2562–2570, 2019.
129. Huang, X., Zhang, L., Zhang, Z., Guo, S., et al ., Wearable biofuel cells based on the classification of enzyme for high power outputs and lifetimes. Biosens. Bioelectron ., 124–125 , 40–52, 2019.
130. Zhang, C.X., Haruyama, T., Kobatake, E., Aizawa, M., Evaluation of substi-tuted-1,10-phenanthroline complexes of osmium as mediator for glucose oxidase of Aspergillus niger . Anal. Chim. Acta , 408 , 225–232, 2000.
131. Shao, M., Pöller, S., Sygmund, C., Ludwig, R., Schuhmann, W., A lowpotential glucose biofuel cell anode based on a toluidine blue modified redox polymer and the flavodehydrogenase domain of cellobiose dehydrogenase. Electrochem. Comm ., 29 , 59–62, 2013.
132. Katz, E., Bückmann, Andreas F., Willner, I., Self-Powered Enzyme-Based Biosensors. J. Amer. Chem. Soc ., 123 , 10752–10753, 2001.
133. Katz, E., Riklin, A., Heleg-Shabtai, V., Willner, I., Bückmann, A.F., Glucose oxidase electrodes via reconstitution of the apo-enzyme: Tailoring of novel glucose biosensors. Anal. Chim. Acta , 385 , 45–58, 1999.
134. Bartlett, P.N., Pratt, K.F.E., Theoretical treatment of diffusion and kinetics in amperometric immobilized enzyme electrodes Part I: Redox mediator entrapped within the film. J. Electroanal. Chem ., 397 , 61–78, 1995.
135. Ruff, A., Redox polymers in bioelectrochemistry: Common playgrounds and novel concepts. Current Opinion in Electrochem ., 5 , 66–73, 2017.
136. Dahms, H., Electronic conduction in aqueous solution. J. Phys. Chem ., 72 , 362–364, 1968.
137. Ruff, I., Friedrich, V.J., Transfer diffusion. I. Theoretical. J. Phys. Chem ., 75 , 3297–3302, 1971.
138. Ugo, P., Moretto, L.M., Ion-exchange voltammetry at polymer-coated electrodes: Principles and analytical prospects. Electroanal ., 7 , 1105–1113, 1995.
139. Tauhardt, L., Kempe, K., Knop, K., Altuntaş, E., et al ., Linear Polyethyleneimine: Optimized Synthesis and Characterization—On the Way to “Pharmagrade” Batches. Macromol. Chem. Phys., 212 , 1918–1924, 2011.
140. Merchant, S.A., Glatzhofer, D.T., Schmidtke, D.W., Effects of Electrolyte and pH on the Behavior of Cross-Linked Films of Ferrocene-Modified Poly(ethylenimine). Langmuir , 23 , 11295–11302, 2007.
141. Merchant, S.A., Tran, T.O., Meredith, M.T., Cline, T.C., et al ., High-Sensitivity Amperometric Biosensors Based on Ferrocene-Modified Linear Poly(ethylenimine). Langmuir , 25 , 7736–7742, 2009.
142. Merchant, S.A., Meredith, M.T., Tran, T.O., Brunski, D.B., et al ., Effect of Mediator Spacing on Electrochemical and Enzymatic Response of Ferrocene Redox Polymers. J. Phys. Chem. C , 114 , 11627–11634, 2010.
Читать дальше