70. Cercado, B., Byrne, N., Bertrand, M., Pocaznoi, D., et al ., Garden compost inoculum leads to microbial bioanodes with potential-independent characteristics. Bioresour. Technol ., 134 , 276–284, 2013.
71. Shi, M.M., Jiang, Y.G., Shi, L., Electromicrobiology and biotechnological applications of the exoelectrogens Geobacter and Shewanella spp. Sci. China-Technological Sci ., 62 , 1670–1678, 2019.
72. Thirumurthy, M.A., Jones, A.K., Geobacter cytochrome OmcZs binds riboflavin: Implications for extracellular electron transfer. Nanotechnol ., 31 , 2020.
73. Lovley, D.R., Walker, D.J.F., Geobacter Protein Nanowires. Front. Microbiol ., 10 , 2019.
74. Marsili, E., Baron, D.B., Shikhare, I.D., Coursolle, D., et al ., Shewanella Secretes flavins that mediate extracellular electron transfer. PNAS USA , 105 , 3968–3973, 2008.
75. Cheng, Z.H., Xiong, J.R., Min, D., Cheng, L., et al ., Promoting bidirectional extracellular electron transfer of Shewanella oneidensis MR-1 for hexavalent chromium reduction via elevating intracellular cAMP level. Biotechnol. Bioeng. http://doi.org/10.1002/bit.27305, 2020 .
76. Engel, C., Schattenberg, F., Dohnt, K., Schroder, U., et al ., Long-Term Behavior of Defined Mixed Cultures of Geobacter sulfurreducens and Shewanella oneidensis in Bioelectrochemical Systems. Front. Bioeng. Biotechnol ., 7 , 2019.
77. Li, Y.R., Wen, L.L., Zhao, H.P., Zhu, L.Z., Addition of Shewanella oneidensis MR-1 to the Dehalococcoides- containing culture enhances the trichloroethene dechlorination. Environ. Int ., 133 , 2019.
78. Semenec, L., Laloo, A.E., Schulz, B.L., Vergara, I.A., et al ., Deciphering the electric code of Geobacter sulfurreducens in cocultures with Pseudomonas aeruginosa via SWATH-MS proteomics. Bioelectrochem ., 119 , 150–160, 2018.
79. Blanchet, E., Duquenne, F., Rafrafi, Y., Etcheverry, L., et al ., Importance of the hydrogen route in up-scaling electrosynthesis for microbial CO 2reduction. Energy & Environ. Sci ., 8 , 3731–3744, 2015.
80. Jafary, T., Daud, W.R.W., Ghasemi, M., Kim, B.H., et al ., Biocathode in microbial electrolysis cell; present status and future prospects. Renewable Sustainable Energy Rev ., 47 , 23–33, 2015.
81. Kierek-Pearscon, K., Karatan, E., Biofilm development in bacteria. Adv. Appl. Microbiol., Vol 57 , 57 , 79–111, 2005.
82. Uria, N., Ferrera, I., Mas, J., Electrochemical performance and microbial community profiles in microbial fuel cells in relation to electron transfer mechanisms. BMC Microbiol ., 17 , 2017.
83. Cardena, R., Moreno-Andrade, I., Buitron, G., Improvement of the bioelectrochemical hydrogen production from food waste fermentation effluent using a novel start-up strategy. J. Chem. Technol. Biotechnol ., 93 , 878–886, 2018.
84. Cercado, B., Chazaro-Ruiz, L.F., Ruiz, V., Lopez-Prieto, I.D., et al ., Biotic and abiotic characterization of bioanodes formed on oxidized carbon electrodes as a basis to predict their performance. Biosens. Bioelectron ., 50 , 373–381, 2013.
85. Zhao, C.-e., Gai, P., Song, R., Chen, Y., et al ., Nanostructured material-based biofuel cells: recent advances and future prospects. Chem. Soc. Rev ., 46 , 1545–1564, 2017.
86. Holzinger, M., Le Goff, A., Cosnier, S., Carbon nanotube/enzyme biofuel cells. Electrochim. Acta , 82 , 179–190, 2012.
87. Mano, N., de Poulpiquet, A., O2 Reduction in Enzymatic Biofuel Cells. Chem. Rev ., 118 , 2392–2468, 2018.
88. Jiang, X., Hu, J., Lieber, A.M., Jackan, C.S., et al ., Nanoparticle Facilitated Extracellular Electron Transfer in Microbial Fuel Cells. Nano Lett ., 14 , 6737–6742, 2014.
89. Moehlenbrock, M.J., Minteer, S.D., Extended lifetime biofuel cells. Chem. Soc. Rev ., 37 , 1188–1196, 2008.
90. Desmet, C., Marquette, C.A., Blum, L.J., Doumèche, B., Paper electrodes for bioelectrochemistry: Biosensors and biofuel cells. Biosens. Bioelectron ., 76 , 145–163, 2016.
91. Filip, J., Tkac, J., Is graphene worth using in biofuel cells? Electrochim. Acta , 136 , 340–354, 2014.
92. Karimi, A., Othman, A., Uzunoglu, A., Stanciu, L., Andreescu, S., Graphene based enzymatic bioelectrodes and biofuel cells. Nanoscale , 7 , 6909–6923, 2015.
93. Le Goff, A., Holzinger, M., Cosnier, S., Recent progress in oxygen-reducing laccase biocathodes for enzymatic biofuel cells. Cell. Mol. Life Sci ., 72 , 941–952, 2015.
94. Rasmussen, M., Abdellaoui, S., Minteer, S.D., Enzymatic biofuel cells: 30 years of critical advancements. Biosens. Bioelectron ., 76 , 91–102, 2016.
95. Willner, I., Yan, Y.M., Willner, B., Tel-Vered, R., Integrated Enzyme-Based Biofuel Cells—A Review. Fuel Cells , 9 , 7–24, 2009.
96. Holade, Y., Tingry, S., Servat, K., Napporn, T.W., et al ., Nanostructured Inorganic Materials at Work in Electrochemical Sensing and Biofuel Cells. Catalyst ., 7 , 2017.
97. Qiu, H.-J., Guan, Y., Luo, P., Wang, Y., Recent advance in fabricating monolithic 3D porous graphene and their applications in biosensing and biofuel cells. Biosens. Bioelectron ., 89 , 85–95, 2017.
98. Babadi, A.A., Bagheri, S., Hamid, S., Bee A., Progress on implantable biofuel cell: Nano-carbon functionalization for enzyme immobilization enhancement. Biosens. Bioelectron ., 79 , 850–860, 2016.
99. Gross, A.J., Holzinger, M., Cosnier, S., Buckypaper bioelectrodes: Emerging materials for implantable and wearable biofuel cells. Energy & Environ. Sci ., 11 , 1670–1687, 2018.
100. Walgama, C., Pathiranage, A., Akinwale, M., Montealegre, R., et al ., Buckypaper–Bilirubin Oxidase Biointerface for Electrocatalytic Applications: Buckypaper Thickness. ACS Appl. Biomater ., 2 , 2229–2236, 2019.
101. Gross, A.J., Chen, X., Giroud, F., Abreu, C., et al ., A High Power Buckypaper Biofuel Cell: Exploiting 1,10-Phenanthroline-5,6-dione with FAD-Dependent Dehydrogenase for Catalytically-Powerful Glucose Oxidation. ACS Catal ., 7 , 4408–4416, 2017.
102. Chen, X., Yin, L., Lv, J., Gross, A.J., et al ., Stretchable and Flexible Buckypaper-Based Lactate Biofuel Cell for Wearable Electronics. Adv. Funct. Mater ., 29 , 1905785, 2019.
103. Güven, G., Şahin, S., Güven, A., Yu, E., Power Harvesting from Human Serum in Buckypaper-Based Enzymatic Biofuel Cell. Front. in Energy Res ., 4 , 2016.
104. Bollella, P., Lee, I., Blaauw, D., Katz, E., A Microelectronic Sensor Device Powered by a Small Implantable Biofuel Cell. ChemPhysChem , 21 , 120–128, 2020.
105. Torrinha, Á., Montenegro, M., Araujo, A., Conjugation of glucose oxidase and bilirubin oxidase bioelectrodes as biofuel cell in a finger-powered microfluidic platform. Electrochim. Acta , 318 , 2019.
106. Hou, C., Liu, A., An integrated device of enzymatic biofuel cells and supercapacitor for both efficient electric energy conversion and storage. Electrochim. Acta , 245 , 303–308, 2017.
107. Escalona-Villalpando, R.A., Martínez-Maciel, A.C., Espinosa-Ángeles, J.C., Ortiz-Ortega, E., et al ., Evaluation of hybrid and enzymatic nanofluidic fuel cells using 3D carbon structures. Int. J. Hydrogen Energy , 43 , 11847–11852, 2018.
Читать дальше