Rebekah B. Esmaili - Earth Observation Using Python

Здесь есть возможность читать онлайн «Rebekah B. Esmaili - Earth Observation Using Python» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Earth Observation Using Python: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Earth Observation Using Python»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Learn basic Python programming to create functional and effective visualizations from earth observation satellite data sets Thousands of satellite datasets are freely available online, but scientists need the right tools to efficiently analyze data and share results. Python has easy-to-learn syntax and thousands of libraries to perform common Earth science programming tasks.
Earth Observation Using Python: A Practical Programming Guide Gain Python fluency using real data and case studies Read and write common scientific data formats, like netCDF, HDF, and GRIB2 Create 3-dimensional maps of dust, fire, vegetation indices and more Learn to adjust satellite imagery resolution, apply quality control, and handle big files Develop useful workflows and learn to share code using version control Acquire skills using online interactive code available for all examples in the book The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.

Earth Observation Using Python — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Earth Observation Using Python», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Table of Contents

1 Cover

2 Title Page Special Publications 75

3 Copyright Page

4 Foreword

5 Acknowledgments

6 Introduction

7 Part I: Overview of Satellite Datasets 1 A TOUR OF CURRENT SATELLITE MISSIONS AND PRODUCTS 1.1 History of Computational Scientific Visualization 1.2 Brief Catalog of Current Satellite Products 1.3 The Flow of Data from Satellites to Computer 1.4 Learning Using Real Data and Case Studies 1.5 Summary References 2 OVERVIEW OF PYTHON 2.1 Why Python? 2.2 Useful Packages for Remote Sensing Visualization 2.3 Maturing Packages 2.4 Summary References 3 A DEEP DIVE INTO SCIENTIFIC DATA SETS 3.1 Storage 3.2 Data Formats 3.3 Data Usage 3.4 Summary References

8 Part II: Practical Python Tutorials for Remote Sensing 4 PRACTICAL PYTHON SYNTAX 4.1 “Hello Earth” in Python 4.2 Variable Assignment and Arithmetic 4.3 Lists 4.4 Importing Packages 4.5 Array and Matrix Operations 4.6 Time Series Data 4.7 Loops 4.8 List Comprehensions 4.9 Functions 4.10 Dictionaries 4.11 Summary References 5 IMPORTING STANDARD EARTH SCIENCE DATASETS 5.1 Text 5.2 NetCDF 5.3 HDF 5.4 GRIB2 5.5 Importing Data Using Xarray 5.6 Summary References 6 PLOTTING AND GRAPHS FOR ALL 6.1 Univariate Plots 6.2 Two Variable Plots 6.3 Three Variable Plots 6.4 Summary References 7 CREATING EFFECTIVE AND FUNCTIONAL MAPS 7.1 Cartographic Projections 7.2 Cylindrical Maps 7.3 Polar Stereographic Maps 7.4 Geostationary Maps 7.5 Creating Maps from Datasets Using OpenDAP 7.6 Summary References 8 GRIDDING OPERATIONS 8.1 Regular One‐Dimensional Grids 8.2 Regular Two‐Dimensional Grids 8.3 Irregular Two‐Dimensional Grids 8.4 Summary References 9 MEANINGFUL VISUALS THROUGH DATA COMBINATION 9.1 Spectral and Spatial Characteristics of Different Sensors 9.2 Normalized Difference Vegetation Index (NDVI) 9.3 Window Channels 9.4 RGB 9.5 Matching with Surface Observations 9.6 Summary References 10 EXPORTING WITH EASE 10.1 Figures 10.2 Text Files 10.3 Pickling 10.4 NumPy Binary Files 10.5 NetCDF 10.6 Summary

9 Part III: Effective Coding Practices 11 DEVELOPING A WORKFLOW 11.1 Scripting with Python 11.2 Version Control 11.3 Virtual Environments 11.4 Methods for Code Development 11.5 Summary References 12 REPRODUCIBLE AND SHAREABLE SCIENCE 12.1 Clean Coding Techniques 12.2 Documentation 12.3 Licensing 12.4 Effective Visuals 12.5 Summary References

10 Conclusion

11 Appendix A: INSTALLING PYTHON A.1 Download Tutorials for This Book A.2 Download and Install Anaconda A.3 Package Management in Anaconda

12 Appendix B: JUPYTER NOTEBOOK

13 Appendix C: ADDITIONAL LEARNING RESOURCES

14 Appendix D: TOOLS

15 Appendix E: FINDING, ACCESSING, AND DOWNLOADING SATELLITE DATASETS

16 Appendix F: ACRONYMS

17 Index

18 End User License Agreement

List of Tables

1 Chapter 3 Table 3.1 Data Types, Typical Ranges, and Decimal Precision and Size in Compu... Table 3.2 Examples of How Data Can Be Rescaled to Fit in Integer Ranges Table 3.3 Comparing Increasing Numbers in Base‐10 to Base‐2 (Binary) Table 3.4 Levels and Examples of Transformations Performed on the Data

2 Chapter 4Table 4.1 Useful Python Functions and Methods Used in This TextTable 4.2 Built‐in Comparison, Identity, Logical, and Membership Operators in...

3 Chapter 5Table 5.1 Common Attributes Found a netCDF file Containing Remote Sensing Dat...

4 Chapter 6Table 6.1 Calls and Options for Initializing a Figure Using matplotlibTable 6.2 Helpful Options for matplotlob Colorbars

5 Chapter 7Table 7.1 Map Projection Shapes, Examples, and Regions of Minimal Distortion

6 Chapter 10Table 10.1 Differences between Image Types

7 Chapter 12Table 12.1 Examples of Code Problems and Solutions

List of Illustrations

1 Chapter 1 Figure 1.1 (a) An example of a Fortran punch card. Each vertical column repr... Figure 1.2 Illustration of current Earth, space weather, and environmental m... Figure 1.3 Equatorial crossing times for various LEO satellites displayed us... Figure 1.4 NOAA‐20 satellite downlink.

2 Chapter 3 Figure 3.1 (a) Canisters of 35mm film that contain imagery recovered from Ni... Figure 3.2 Spacing and distance between ( x, y ) points for an example regular... Figure 3.3 An illustration of how a granule of satellite data taken from a p... Figure 3.4 Read order for row and column major. Figure 3.5 Example of how netCDF data are organized. Each variable has metad...Figure 3.6 Direct broadcast (DB) antenna sites, which can provide data in re...

3 Chapter 5Figure 5.1 Illustration showing which values are used in a computation of a ...Figure 5.2 NUCAPS data are organized into 120 fields of regard (FORs) or foo...Figure 5.3 Screenshot of the mean SST dataset in the NOAA/ESRL data catalog....

4 Chapter 6Figure 6.1 VIIRS imagery of wildfires on 8 November 2018. Source: Worldview ...Figure 6.2 Different matplotlib axes layout syntax using the plt.subplot...

5 Chapter 7Figure 7.1 Most varieties of map projections are cylindrical, conic, or plan...Figure 7.2 Each projection type has different regions of distortion. Lighter...Figure 7.3 Examples of the types of maps within each projection category.Figure 7.4 Imager projections from Geostationary Satellites.

6 Chapter 8Figure 8.1 An example of differences in the nearest neighbor, linear, and cu...

7 Chapter 9Figure 9.1 Example of various instrument channels and ranges between 400–100...

8 Chapter 11Figure 11.1 Converting Jupyter Notebook to a script.Figure 11.2 A flow chart of the steps necessary to run scripts in the comman...Figure 11.3 Installing nb_conda adds a new tab to Jupyter Notebook, which al...Figure 11.4 Changing kernel inside Juypter Notebooks.Figure 11.5 Comparison of waterfall and agile framework.

9 Chapter 12Figure 12.1 Example of uniform color scheme (top) and how a different color ...Figure 12.2 Perceptually uniform sequential colors available in matplotlib....

Guide

1 Cover Page

2 Title Page Special Publications 75

3 Copyright Page

4 Foreword

5 Acknowledgments

6 Table of Contents

7 Begin Reading

8 Conclusion

9 Appendix A Installing Python

10 Appendix B Jupyter Notebook

11 Appendix C Additional Learning Resources

12 Appendix D Tools

13 Appendix E Finding, Accessing, and Downloading Satellite Datasets

14 Appendix F Acronyms

15 Index

16 WILEY END USER LICENSE AGREEMENT

Pages

1 iii

2 vii

3 viii

4 ix

5 1

6 2

7 3

8 4

9 5

10 7

11 8

12 9

13 10

14 11

15 12

16 13

17 14

18 15

19 17

20 18

21 19

22 20

23 21

24 22

25 23

26 25

27 26

28 27

29 28

30 29

31 30

32 31

33 32

34 33

35 34

36 35

37 36

38 37

39 38

40 39

41 40

42 41

43 42

44 43

45 44

46 45

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

56 56

57 57

58 58

59 59

60 60

61 61

62 62

63 63

64 64

65 65

66 66

67 67

68 68

69 69

70 70

71 71

72 72

73 73

74 74

75 75

76 76

77 77

78 78

79 79

80 80

81 81

82 82

83 83

84 84

85 85

86 86

87 87

88 88

89 89

90 90

91 91

92 92

93 93

94 94

95 95

96 96

97 97

98 98

99 99

100 100

101 101

102 102

103 103

104 104

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Earth Observation Using Python»

Представляем Вашему вниманию похожие книги на «Earth Observation Using Python» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Earth Observation Using Python»

Обсуждение, отзывы о книге «Earth Observation Using Python» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x