18 Chapter 18Figure 18.1 Deep Neural Network (DNN).Figure 18.2 The evolution of machine learning techniques (year-wise).
1 Chapter 1 Table 1.1 Various parameters of the layers of LeNet. Table 1.2 Every column indicates which feature map in S2 are combined by the uni... Table 1.3 AlexNet layer details. Table 1.4 Various parameters of ZFNet. Table 1.5 Various parameters of VGG-16. Table 1.6 Various parameters of GoogleNet. Table 1.7 Various parameters of ResNet. Table 1.8 Comparison of ResNet-50 and ResNext-50 (32 × 4d). Table 1.9 Comparison of ResNet-50 and ResNext-50 and SE-ResNeXt-50 (32 × 4d). Table 1.10 Comparison of DenseNet. Table 1.11 Various parameters of MobileNets. Table 1.12 State-of-art of spine segmentation approaches.
2 Chapter 2 Table 2.1 History of search engines. Table 2.2 Three types of user refinement of queries. Table 2.3 Different approaches for the query suggestion techniques.
3 Chapter 3 Table 3.1 Types of liver lesions. Table 3.2 Dataset count. Table 3.3 Hyperparameter settings for training. Table 3.4 Confusion matrix for AlexNet. Table 3.5 Confusion matrix for GoogLeNet. Table 3.6 Confusion matrix for ResNet-18. Table 3.7 Confusion matrix for ResNet-50. Table 3.8 Comparison of classification accuracies.
4 Chapter 4Table 4.1 Retrieval performance of metric learning for VGG19.Table 4.2 Performance of retrieval techniques of the trained VGG19 among fine-tu...Table 4.3 PR values of various models—a comparison for CT image retrieval.Table 4.4 Recall vs. precision for proposed content-based image retrieval.Table 4.5 Loss function of proposed deep regression networks for training datase...Table 4.6 Loss function of proposed deep regression networks for validation data...Table 4.7 Land mark details (identification rates vs. distance error) for the pr...Table 4.8 Accuracy value of the proposed system.Table 4.9 Accuracy of the retrieval methods compared with the metric learning–ba...
5 Chapter 6Table 6.1 Definition of the abbreviations.
6 Chapter 7Table 7.1 Performance of proposed models on English dataset.Table 7.2 Performance of proposed model on Bangla dataset.Table 7.3 Performance of proposed model on Math Symbol dataset.
7 Chapter 8Table 8.1 ABCD factor for TDS value.Table 8.2 Classify mole according to TDS value.
8 Chapter 9Table 9.1 The confusion matrix for different classifier.Table 9.2 Performance analysis of different classifiers: Random Forest, SVM, Naï...
9 Chapter 10Table 10.1 Result analysis.
10 Chapter 11Table 11.1 Comparison of different techniques and tumor.
11 Chapter 13Table 13.1 Cognitive functions related with routine activities.Table 13.2 Situation and design features.Table 13.3 Accuracy of prediction.
12 Chapter 14Table 14.1 Accuracy comparison and mean of algorithms with baseline records.Table 14.2 Accuracy comparison and mean of algorithms with current records.
13 Chapter 15Table 15.1 Variances of Convolutional Neural Network (CNN).Table 15.2 Various issues challenges faced by researchers for using deep learnin...
14 Chapter 17Table 17.1 Comparative analysis: classification accuracy for 10 datasets—analysi...
15 Chapter 18Table 18.1 Comparison among data mining, machine learning, and deep learning.
1 Cover
2 Table of Contents
3 Title Page
4 Copyright
5 Preface
6 Begin Reading
7 Index
8 End User License Agreement
1 v
2 ii
3 iii
4 iv
5 xix
6 xx
7 1
8 2
9 3
10 4
11 5
12 6
13 7
14 8
15 9
16 10
17 11
18 12
19 13
20 14
21 15
22 16
23 17
24 18
25 19
26 20
27 21
28 22
29 23
30 24
31 25
32 26
33 27
34 28
35 29
36 30
37 31
38 32
39 33
40 34
41 35
42 36
43 37
44 38
45 39
46 40
47 41
48 42
49 43
50 44
51 45
52 46
53 47
54 48
55 49
56 50
57 51
58 53
59 54
60 55
61 56
62 57
63 58
64 59
65 60
66 61
67 62
68 63
69 64
70 65
71 66
72 67
73 68
74 69
75 70
76 71
77 72
78 73
79 74
80 75
81 76
82 77
83 79
84 80
85 81
86 82
87 83
88 84
89 85
90 86
91 87
92 88
93 89
94 90
95 91
96 92
97 93
98 94
99 95
100 96
101 97
102 98
103 99
104 100
105 101
106 102
107 103
108 104
109 105
110 106
111 107
112 109
113 110
114 111
115 112
116 113
117 114
118 115
119 116
120 117
121 118
122 119
123 120
124 121
125 122
126 123
127 124
128 125
129 126
130 127
131 128
132 129
133 131
134 132
135 133
136 134
137 135
138 136
139 137
140 138
141 139
142 140
143 141
144 142
145 143
146 144
147 145
148 146
149 147
150 148
151 149
152 150
153 151
154 152
155 153
156 154
157 155
158 156
159 157
160 158
161 159
162 160
163 161
164 162
165 163
166 164
167 165
168 166
169 167
170 168
171 169
172 170
173 171
174 172
175 173
176 174
177 175
178 176
179 177
180 178
181 179
182 180
183 181
184 182
185 183
186 184
187 185
188 186
189 187
190 188
191 189
192 190
193 191
194 192
195 193
196 194
197 195
198 196
199 197
200 198
201 199
202 200
203 201
204 202
205 203
206 204
207 205
208 206
209 207
210 208
211 209
212 210
213 211
214 212
215 213
216 214
217 215
218 217
219 218
220 219
221 220
222 221
223 222
224 223
225 224
226 225
227 226
228 227
229 228
230 229
231 230
232 231
233 232
234 233
235 234
236 235
237 236
238 237
239 239
240 240
241 241
242 242
243 243
244 244
245 245
246 246
247 247
248 248
249 249
250 250
251 251
252 252
253 253
254 254
255 255
256 257
257 258
258 259
259 260
260 261
261 262
262 263
263 264
264 265
265 266
266 267
267 268
268 269
269 270
270 271
271 272
272 273
273 274
274 275
275 276
276 277
277 278
278 279
279 280
280 281
281 282
282 283
283 284
284 285
285 286
286 287
287 288
288 289
289 290
290 291
291 292
292 293
293 294
294 295
295 296
296 297
297 298
298 299
299 300
300 301
301 302
302 303
303 304
304 305
305 306
306 307
307 308
308 309
309 310
310 311
311 312
312 313
313 314
314 315
315 316
316 317
317 318
318 319
319 320
320 321
321 322
322 323
323 324
324 325
325 326
326 327
327 329
328 330
329 331
330 332
331 333
Читать дальше