Artificial Intelligence and Data Mining Approaches in Security Frameworks

Здесь есть возможность читать онлайн «Artificial Intelligence and Data Mining Approaches in Security Frameworks» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Artificial Intelligence and Data Mining Approaches in Security Frameworks: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Artificial Intelligence and Data Mining Approaches in Security Frameworks»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Artificial intelligence (AI) and data mining is the fastest growing field in computer science. AI and data mining algorithms and techniques are found to be useful in different areas like pattern recognition, automatic threat detection, automatic problem solving, visual recognition, fraud detection, detecting developmental delay in children, and many other applications. However, applying AI and data mining techniques or algorithms successfully in these areas needs a concerted effort, fostering integrative research between experts ranging from diverse disciplines from data science to Artificial Intelligence. Successful application of security frameworks to enable meaningful, cost effective, personalize security service is a primary aim of engineers and researchers today. However realizing this goal requires effective understanding, application and amalgamation of AI and Data Mining and several other computing technologies to deploy such system in an effective manner.
This book provides state of the art approaches of artificial intelligence and data mining in these areas. It includes areas of detection, prediction, as well as future framework identification, development, building service systems and analytical aspects. In all these topics, applications of AI and data mining, such as artificial neural networks, fuzzy logic, genetic algorithm and hybrid mechanisms, are explained and explored. This book is aimed at the modeling and performance prediction of efficient security framework systems, bringing to light a new dimension in the theory and practice. 
This groundbreaking new volume presents these topics and trends, bridging the research gap on AI and data mining to enable wide-scale implementation. Whether for the veteran engineer or the student, this is a must-have for any library.

Artificial Intelligence and Data Mining Approaches in Security Frameworks — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Artificial Intelligence and Data Mining Approaches in Security Frameworks», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Keywords : Data mining, security, intrusion detection, anamoly detection, outlier detection, classification, privacy preserving data mining

2.1 Introduction

A computer system has the ability to protect its valuable information, raw data along with its resources in terms of privacy, veracity and authenticity; this ability is known as computer security. A third party cannot read or edit the contents of a database by using the parameters i.e., Privacy/confidentiality and integrity. By using the parameter authenticity, an unauthorised person is not allowed to modify, use or view the contents of a database. When one or more resources of a computer compromises the availability, integrity or confidentiality by an action, it is known as intrusion. These types of attacks can be prevented by using firewall and filtering router policies. Intrusions can happen even in the most secure systems and therefore it is advisable to detect the same in the beginning. By employing data mining techniques, patterns of features of a system can be detected by an intrusion detection system (IDS) so that anomalies can be detected with the help of an appropriate set of classifiers. For easy detection of intrusion, some important data mining techniques such as classification and clustering are helpful.

Test data could be analysed and labelled into known type of classes with the help of classification techniques. For objects grouping into a set of clusters, clustering methods are used. These methods are used in such a way that a cluster has all similar objects. There could be some security challenges for mining of underlying knowledge from large volumes of data as well as extraction of hidden patterns by using data mining techniques (Ardenas et al. , 2014). To solve this issue, Privacy Preserving Data Mining (PPDM) is used, which aims to derive important and useful information from an unwanted or informal database (Friedman, Schuster, 2008). There are various PPDM approaches. On the basis of enforcing privacy principle, some of them can be shown in Figure 2.1.

a) Suppression

An individual’s private or sensitive information like name, salary, address and age, if suppressed prior to any calculation is known as suppression. Suppression can be done with the help of some techniques like Rounding (Rs/- 15365.87 can be round off to 15,000), Full form (Name Chitra Mehra can be substituted with the initials, i.e., CM and Place India may be replaced with IND and so on). When there is a requirement of full access to sensitive values, suppression cannot be used by data mining. Another way to do suppression is to limit rather than suppress the record’s sensitive information. The method by which we can suppress the identity linkage of a record is termed as De-identification. One such de-identification technique is k-Anonymity. Assurance of protection of data which was released against re-identification of the person’s de-identification (Rathore et al. , 2020), (Singh, Singh, 2013). K-anonymity and its application is difficult before collecting complete data at one trusted place. For its solution, secret sharing technique based cryptographic solution could be used.

Figure 21 Privacy preserving data mining approaches b Data Randomization The - фото 4

Figure 2.1 Privacy preserving data mining approaches.

b) Data Randomization

The central server of an organization takes information of many customers and builds an aggregate model by performing various data mining techniques. It permits the customers to present precise noise or arbitrarily bother the records and to find out accurate information from that pool of data. There are several ways for introduction of noise, i.e., addition or multiplication of the randomly generated values. To achieve preservation of the required privacy, we use agitation in data randomization technique. To generate an individual record, randomly generated noise can be added to the innovative data. The noise added to the original data is non-recoverable and thus leads to the desired privacy.

Following are the steps of the randomization technique:

1 After randomizing the data by the data provider, it is to be conveyed to the Data Receiver.

2 By using algorithm of distribution reconstruction, data receiver is able to perform computation of distribution on the same data.

c) Data Aggregation

Data is combined from various sources to facilitate data analysis by data aggregation technique. By doing this, an attacker is able to infer private- and individual-level data and also to recognize the resource. When extracted data allows the data miner to identify specific individuals, privacy of data miner is considered to be under a serious threat. When data is anonymized immediately after the aggregation process, it can be prevented from being identified, although, the anonymized data sets comprise sufficient information which is required for individual’s identification (Kumar et al. , 2018).

d) Data Swapping

For the sake of privacy protection, exchange of values across different records can be done by using this process. Privacy of data can still be preserved by allowing aggregate computations to be achieved exactly as it was done before, i.e., without upsetting the lower order totals of the data. K-anonymity can be used in combination with this technique as well as with other outlines to violate the privacy definitions of that model.

e) Noise Addition/Perturbation

For maximum accuracy of queries and diminish the identification chances its records, there is a mechanism provided by addition of controlled noise (Bhargava et al. , 2017). Following are some of the techniques used for noise addition:

1 Parallel Composition

2 Laplace Mechanism

3 Sequential Composition

2.2 Data Mining Techniques and Their Role in Classification and Detection

Malware computer programs that repeat themselves for spreading out from one computer to another computer are called worms. Malware comprises adware, worms, Trojan horse, computer viruses, spyware, key loggers, http worm, UDP worm and port scan worm, and remote to local worm, other malicious code and user to root worm (Herzberg, Gbara, 2004). There are various reasons that attackers write these programs, such as:

1 i) Computer process and its interruption

2 ii) Assembling of sensitive information

3 iii) A private system can gain entry

It is very important to detect a worm on the internet because of the following two reasons:

1 i) It creates vulnerable points

2 ii) Performance of the system can be reduced

Therefore, it is important to notice the worm ot the onset and categorize it with the help of data mining classification algorithms. Given below are the classification algorithms that can be used; Bayesian network, Random Forest, Decision Tree, etc. (Rathore et al. , 2013). An underlying principle is that the intrusion detection system (IDS) can be used by the majority of worm detection techniques. It is very difficult to predict that what will be the next form taken by a worm.

There is a challenge in automatic detection of a worm in the system.

Intrusion Detection Systems can be broadly classified into two types:

1 i) On the basis of network: network packets are reflected till that time unless they are not spread to an end-host

2 ii) On the basis of host: Those network packets are reflected which have already been spread to the end-host

Furthermore, encode network packets is the core area of host-based detection IDS to hit the stroke of the internet worm. We have to pay attention towards the performances of traffic in the network by focusing on the without encoding network packet. Numerous machine learning techniques have been used for worm and intrusion detection systems. Thus, data mining and machine learning techniques are essential as well as they have an important role in a worm detection system. Numerous Intrusion Detection models have been proposed by using various data mining schemes. To study irregular and usual outlines from the training set, Decision Trees and Genetic Algorithms of Machine Learning can be employed and then on the basis of generated classifiers, there could be labeled as Normal or Abnormal classes for test data. The labelled data, “Abnormal”, is helpful to point out the presence of an intrusion.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Artificial Intelligence and Data Mining Approaches in Security Frameworks»

Представляем Вашему вниманию похожие книги на «Artificial Intelligence and Data Mining Approaches in Security Frameworks» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Artificial Intelligence and Data Mining Approaches in Security Frameworks»

Обсуждение, отзывы о книге «Artificial Intelligence and Data Mining Approaches in Security Frameworks» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x