Artificial Intelligence and Data Mining Approaches in Security Frameworks

Здесь есть возможность читать онлайн «Artificial Intelligence and Data Mining Approaches in Security Frameworks» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Artificial Intelligence and Data Mining Approaches in Security Frameworks: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Artificial Intelligence and Data Mining Approaches in Security Frameworks»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Artificial intelligence (AI) and data mining is the fastest growing field in computer science. AI and data mining algorithms and techniques are found to be useful in different areas like pattern recognition, automatic threat detection, automatic problem solving, visual recognition, fraud detection, detecting developmental delay in children, and many other applications. However, applying AI and data mining techniques or algorithms successfully in these areas needs a concerted effort, fostering integrative research between experts ranging from diverse disciplines from data science to Artificial Intelligence. Successful application of security frameworks to enable meaningful, cost effective, personalize security service is a primary aim of engineers and researchers today. However realizing this goal requires effective understanding, application and amalgamation of AI and Data Mining and several other computing technologies to deploy such system in an effective manner.
This book provides state of the art approaches of artificial intelligence and data mining in these areas. It includes areas of detection, prediction, as well as future framework identification, development, building service systems and analytical aspects. In all these topics, applications of AI and data mining, such as artificial neural networks, fuzzy logic, genetic algorithm and hybrid mechanisms, are explained and explored. This book is aimed at the modeling and performance prediction of efficient security framework systems, bringing to light a new dimension in the theory and practice. 
This groundbreaking new volume presents these topics and trends, bridging the research gap on AI and data mining to enable wide-scale implementation. Whether for the veteran engineer or the student, this is a must-have for any library.

Artificial Intelligence and Data Mining Approaches in Security Frameworks — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Artificial Intelligence and Data Mining Approaches in Security Frameworks», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

5 Code Reuse Attacks: Code reuse attacks (CRAs) are recent development in security. They occur when an attacker expresses the flow of control through a previously existing code. By using this, attackers are allowed to execute random code on a compromised machine. These are return-oriented and jump-oriented programming approaches. They can reclaim library code fragments. The Return Into Lib C (RILC) is a type of code-reuse attack where the stack is compromised and the control is transferred to the beginning of an existing library function such as mprotect() to create a memory region that allows both write and execution operations on it to bypass W+X (Bhatkar et al., 2005). To overcome such attacks, we use data mining techniques. When the source code is checked to reveal any such fault and for this the instructions are classified as malicious. Some of the classification algorithms that can be used in this Regard are Logistic Regression, Bayesian, Support Vector Machine and Decision Tree.

2.8 Conclusion

The main aim of this study is to find the role of Data Mining techniques in attaining security. A few applications such as Privacy Preserving Data Mining (PPDM), Intrusion Detection System (IDS), Phishing Website Classification and Mitigation of Code Injection are discussed. Some Classification and Clustering algorithms are also discussed for their significant role in an intrusion detection system. Other basic Data mining techniques used for intrusion detection system such as Feature Extraction, Association Rule Mining and Decision Trees are also discussed. Other security applications of Data Mining such as Malware Detection, Spam Detection, Web Mining and Crime Profiling can also be explored in terms of security as a future scope.

References

Cárdenas, A. A., Berthier, R., Bobba, R.B., Huh, J.H., Jetcheva, J.G., Grochocki, D., & Sanders, W.H. (2014) “A Framework for Evaluating Intrusion Detection Architectures in Advanced Metering Infrastructures,” IEEE Transactions on Smart Grid , vol. 5(2), pp. 906–915.

Friedman, R. W., & Schuster. A. (2008) “Providing kAnonymity in Data Mining,” VLDB Journal , vol. 17(4), pp. 789–804.

Singh, R., Kumar, P. & Diaz, V. (2020) “A Holistic Methodology for Improved RFID Network Lifetime by Advanced Cluster Head Selection using Dragonfly Algorithm” International Journal of Interactive Multimedia and Artificial Intelligence , vol. 6(2), pp. 8.

Singh, B., Singh, R. & Rathore. P.S. (2013) “Randomized Virtual Scanning Technique for Road Network” International Journal of Computer Applications , vol. 77(16). pp. 1-4.

Kumar, N., Triwedi, P. & Rathore, P.S. (2018) “An Adaptive Approach for image adaptive watermarking using Elliptical curve cryptography (ECC)” First International Conference on Information Technology and Knowledge Management pp. 89–92, ISSN 2300-5963.

Bhargava, N., Singh, P., Kumar, A., Sharma, T. & Meena, P. (2017) “An Adaptive Approach for Eigenfaces-based Facial Recognition” International Journal on Future Revolution in Computer Science & Communication Engineering (IJFRSCE) , vol. 3(12), pp. 213 – 216.

Herzberg, A. & Gbara, A. (2004) “Trustbar: Protecting (even naive) Web Users from Spoofing and Phishing Attacks” Cryptology ePrint Archive Report pp. 155.

Rathore, P. S., Chaudhary A. & Singh, B. (2013) “Route planning via facilities in time dependent network,” IEEE Conference on Information & Communication Technologies , pp. 652-655.

Fu, A. Y,, Wenyin, L. & Deng X (2006) “Detecting Phishing Web Pages with Visual Similarity Assessment Based on Earth Mover’s Distance (emd),” IEEE Transactions on Dependable and Secure Computing , vol. 3(4), pp. 301–311.

Manek, A., S., Shenoy, P., D., Mohan, M., C. & Venugopal K. R., (2016) “Detection of Fraudulent and Malicious Websites by Analysing User Reviews for Online Shopping Websites,” International Journal of Knowledge and Web Intelligence , vol. 5(3), pp. 171–189.

Wu, B., Lu, T., Zheng, K., Zhang, D. & Lin, X. (2015) “Smartphone Malware Detection Model Based on Artificial Immune System,” China Communications , vol. 11(13), pp. 86–92.

Dwork, C., McSherry, F., Nissim, K. & Smith, A. (2006) “Calibrating Noise to Sensitivity in Private Data Analysis,” Theory of Cryptography Conference , pp. 265–284.

Jackson, C., Simon, D.R., Tan, D. S. & Barth, A. (2007) “An Evaluation of Extended Validation and Picturein-Picture Phishing attacks,” International Conference on Financial Cryptography and Data Security , pp. 281–293.

Rathore, P.S. (2017) “An adaptive method for Edge Preserving Denoising, International Conference on Communication and Electronics Systems, Institute of Electrical and Electronics Engineers, Proceedings of the 2nd International Conference on Communication and Electronics Systems (ICCES 2017).

Tseng, C., Y., Balasubramanyam, P., Limprasittiporn, R., Rowe, J. & Levitt, K. (2016) “A Specification-Based Intrusion Detection System” Global Journals Inc. (US) Global Journal of Computer Science and Technology , vol. 16(5), pp.125–134.

Beaver, D., Micali, S. & Rogaway, P. (1990) “The Round Complexity of Secure Protocols,” Proceedings of the 22nd Annual ACM Symposium on Theory of Computing , pp. 503–513.

Bhargava, N., Dayma, S., Kumar, A. & Singh, P. (2017) “An approach for classification using simple CART algorithm in WEKA,” 11th International Conference on Intelligent Systems and Control (ISCO) , pp. 212–216.

Patel, D., K., B., & Bhatt, S. H. (2014) “Implementnig Data Mining for Detection of Malware from Code,” International Journal of Advanced Computer Technology: Compusoft , vol. 3(4), pp. 732–740.

Stanley, D. M. (2013) “CERIAS Tech Report 2013-19 Improved Kernel Security through Code Validation, Diversification, and Minimization,” Ph.D. Thesis.

Yeung D. Y. & Ding, Y. (2003) “Host-Based Intrusion Detection Using Dynamic and Static Behavioral Models,” Pattern Recognition , vol. 36(1), pp. 229–243.

Bloedorn, E., Christiansen, A. D., Hill, W., Skorupka, C., Talbot, L.M. & Tivel, J. (2001) “Data Mining for Network Intrusion Detection: How to Get Started,” MITRE , pp. 1–9.

Barrantes, E.G., Ackley, D. H., Palmer, T.S., Stefanovic, D. & Zovi, D.D. (2003) “Randomized Instruction Set Emulation to Disrupt Binary Code Injection Attacks,” Proceedings of the 10th ACM Conference on Computer and Communications Security , pp. 281–289.

Reddy, G., Iaeng, M., Reddy, V. & Rajulu (2011) “A Study of Intrusion Detection in Data Mining” World Congress on Engineering (WCE) , pp. 6–8.

Lee, W., Stolfo, S.J. & Mok, K.W. (1999) “A Data Mining Framework for Building Intrusion Detection Models,” Proceedings of the IEEE Symposium on Security and Privacy , pp. 120–132.

Jacobson, E. R., Bernat, A.R., Williams, W.R. & Miller, B.P. (2014) “Detecting Code Reuse Attacks with a Model of Conformant Program Execution,” International Symposium on Engineering Secure Software and Systems , pp. 1–18.

Giannotti, F., Lakshmanan, L.V., Monreale, A., Pedreschi, D. & Wang, H. (2013) “Privacy-Preserving Mining of Association Rules from Outsourced Transaction Databases,” IEEE Systems Journal , vol. 7(3), pp. 385–395.

Thabtah, F., Cowling, P., & Peng, Y. (2005) “MCAR: Multiclass Classification based on Association Rule,” 3rd ACS/IEEE International Conference on Computer Systems and Applications , pp. 33–39.

Habibi, J., Panicker, A., Gupta, A. & Bertino, E. (2015) “DISARM: Mitigating Buffer Overflow Attacks on Embedded Devices,” International Conference on Network and System Security , pp. 112–129.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Artificial Intelligence and Data Mining Approaches in Security Frameworks»

Представляем Вашему вниманию похожие книги на «Artificial Intelligence and Data Mining Approaches in Security Frameworks» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Artificial Intelligence and Data Mining Approaches in Security Frameworks»

Обсуждение, отзывы о книге «Artificial Intelligence and Data Mining Approaches in Security Frameworks» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x