Yong Chen - Industrial Data Analytics for Diagnosis and Prognosis

Здесь есть возможность читать онлайн «Yong Chen - Industrial Data Analytics for Diagnosis and Prognosis» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Industrial Data Analytics for Diagnosis and Prognosis: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Industrial Data Analytics for Diagnosis and Prognosis»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Discover data analytics methodologies for the diagnosis and prognosis of industrial systems under a unified random effects model 
 
In 
, distinguished engineers Shiyu Zhou and Yong Chen deliver a rigorous and practical introduction to the random effects modeling approach for industrial system diagnosis and prognosis. In the book’s two parts, general statistical concepts and useful theory are described and explained, as are industrial diagnosis and prognosis methods. The accomplished authors describe and model fixed effects, random effects, and variation in univariate and multivariate datasets and cover the application of the random effects approach to diagnosis of variation sources in industrial processes. They offer a detailed performance comparison of different diagnosis methods before moving on to the application of the random effects approach to failure prognosis in industrial processes and systems. 
In addition to presenting the joint prognosis model, which integrates the survival regression model with the mixed effects regression model, the book also offers readers: 
A thorough introduction to describing variation of industrial data, including univariate and multivariate random variables and probability distributions Rigorous treatments of the diagnosis of variation sources using PCA pattern matching and the random effects model An exploration of extended mixed effects model, including mixture prior and Kalman filtering approach, for real time prognosis A detailed presentation of Gaussian process model as a flexible approach for the prediction of temporal degradation signals Ideal for senior year undergraduate students and postgraduate students in industrial, manufacturing, mechanical, and electrical engineering, 
 is also an indispensable guide for researchers and engineers interested in data analytics methods for system diagnosis and prognosis.

Industrial Data Analytics for Diagnosis and Prognosis — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Industrial Data Analytics for Diagnosis and Prognosis», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Chapter 11: Prognosis Using Gaussian Process Model 11.1 Introduction to Gaussian Process Model11.2 GP Parameter Estimation and GP Based Prediction11.3 Pairwise Gaussian Process Model11.3.1 Introduction to Multi-output Gaussian Process11.3.2 Pairwise GP Modeling Through Convolution Process11.4 Multiple Output Gaussian Process for Multiple Signals11.4.1 Model Structure11.4.2 Model Parameter Estimation and Prediction11.4.3 Time-to-Failure Distribution Based on GP PredictionsBibliographical NotesExercises Chapter 12: Prognosis Through Mixed Effects Models for Time-to-Event Data 12.1 Models for Time-to-Event Data Without Covariates12.1.1 Parametric Models for Time-to-Event Data12.1.2 Non-parametric Models for Time-to-Event Data12.2 Survival Regression Models12.2.1 Cox PH Model with Fixed Covariates12.2.2 Cox PH Model with Time Varying Covariates12.2.3 Assessing Goodness of Fit12.3 Joint Modeling of Time-to-Event Data and Longitudinal Data12.3.1 Structure of Joint Model and Parameter Estimation12.3.2 Online Event Prediction for a New Unit12.4 Cox PH Model with Frailty Term for Recurrent EventsBibliographical NotesExercisesAppendix

12 Appendix: Basics of Vectors, Matrices, and Linear Vector Space

13 References

14 Index

Guide

1 Cover

2 Title page Industrial Data Analytics for Diagnosis and Prognosis A Random Effects Modelling Approach Shiyu Zhou University of Wisconsin – Madison Yong Chen University of Iowa

3 Copyright

4 Dedication

5 Table of Contents

6 Preface

7 Acknowledgments

8 Acronyms

9 Table of Notation

10 Begin Reading

11 Appendix: Basics of Vectors, Matrices, and Linear Vector Space

12 References

13 Index

14 End User License Agreement

Pages

1 i

2 ii

3 iii

4 iv

5 v

6 vi

7 vii

8 viii

9 ix

10 x

11 xi

12 xii

13 xiii

14 xiv

15 xv

16 xvi

17 xvii

18 xviii

19 1

20 2

21 3

22 4

23 5

24 6

25 7

26 8

27 9

28 10

29 11

30 12

31 13

32 14

33 15

34 16

35 17

36 18

37 19

38 20

39 21

40 22

41 23

42 24

43 25

44 26

45 27

46 28

47 29

48 30

49 31

50 32

51 33

52 34

53 35

54 36

55 37

56 38

57 39

58 40

59 41

60 42

61 43

62 44

63 45

64 46

65 47

66 48

67 49

68 50

69 51

70 52

71 53

72 54

73 55

74 56

75 57

76 58

77 59

78 60

79 61

80 62

81 63

82 64

83 65

84 66

85 67

86 68

87 69

88 70

89 71

90 72

91 73

92 74

93 75

94 76

95 77

96 78

97 79

98 80

99 81

100 82

101 83

102 84

103 85

104 86

105 87

106 88

107 89

108 90

109 91

110 92

111 93

112 94

113 95

114 96

115 97

116 98

117 99

118 100

119 101

120 102

121 103

122 104

123 105

124 106

125 107

126 108

127 109

128 110

129 111

130 112

131 113

132 114

133 115

134 116

135 117

136 118

137 119

138 120

139 121

140 122

141 123

142 124

143 125

144 126

145 127

146 128

147 129

148 130

149 131

150 132

151 133

152 134

153 135

154 136

155 137

156 138

157 139

158 140

159 141

160 142

161 143

162 144

163 145

164 146

165 147

166 148

167 149

168 150

169 151

170 152

171 153

172 154

173 155

174 156

175 157

176 158

177 159

178 160

179 161

180 162

181 163

182 164

183 165

184 166

185 167

186 168

187 169

188 170

189 171

190 172

191 173

192 174

193 175

194 176

195 177

196 178

197 179

198 180

199 181

200 182

201 183

202 184

203 185

204 186

205 187

206 188

207 189

208 190

209 191

210 192

211 193

212 194

213 195

214 196

215 197

216 198

217 199

218 200

219 201

220 202

221 203

222 204

223 205

224 206

225 207

226 208

227 209

228 210

229 211

230 212

231 213

232 214

233 215

234 216

235 217

236 218

237 219

238 220

239 221

240 222

241 223

242 224

243 225

244 226

245 227

246 228

247 229

248 230

249 231

250 232

251 233

252 234

253 235

254 236

255 237

256 238

257 239

258 240

259 241

260 242

261 243

262 244

263 245

264 246

265 247

266 248

267 249

268 250

269 251

270 252

271 253

272 254

273 255

274 256

275 257

276 258

277 259

278 260

279 261

280 262

281 263

282 264

283 265

284 266

285 267

286 268

287 269

288 270

289 271

290 272

291 273

292 274

293 275

294 276

295 277

296 278

297 279

298 280

299 281

300 282

301 283

302 284

303 285

304 286

305 287

306 288

307 289

308 290

309 291

310 292

311 293

312 294

313 295

314 296

315 297

316 298

317 299

318 300

319 301

320 302

321 303

322 304

323 305

324 306

325 307

326 308

327 309

328 310

329 311

330 312

331 313

332 314

333 315

334 316

335 317

336 318

337 319

338 320

339 321

340 322

341 323

342 324

343 325

344 326

345 327

346 328

347 329

348 330

Preface

Today, we are facing a data rich world that is changing faster than ever before. The ubiquitous availability of data provides great opportunities for industrial enterprises to improve their process quality and productivity. Industrial data analytics is the process of collecting, exploring, and analyzing data generated from industrial operations and throughout the product life cycle in order to gain insights and improve decision-making. This book describes industrial data analytics approaches with an emphasis on diagnosis and prognosis of industrial processes and systems.

A large number of textbooks/research monographs exist on diagnosis and prognosis in the engineering field. Most of these engineering books focus on model-based diagnosis and prognosis problems in dynamic systems. The model-based approaches adopt a dynamic model for the system, often in the form of a state space model, as the basis for diagnosis and prognosis. Different from these existing books, this book focuses on the concept of random effects and its applications in system diagnosis and prognosis . The impetus for this book arose from the current digital revolution. In this digital age, the essential feature of a modern engineering system is that a large amount of data from multiple similar units/machines during their operations are collected in real time. This feature poses significant intellectual opportunities and challenges. As for opportunities, since we have observations from potentially a very large number of similar units, we can compare their operations, share the information, and extract common knowledge to enable accurate and tailored prediction and control at the individual level. As for challenges, because the data are collected in the field and not in a controlled environment, the data contain significant variation and heterogeneity due to the large variations in working/usage conditions for different units. This requires that the analytics approaches should be not only general (so that the common information can be learned and shared), but also flexible (so that the behavior of an individual unit can be captured and controlled). The random effects modeling approaches can exactly address these opportunities and challenges.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Industrial Data Analytics for Diagnosis and Prognosis»

Представляем Вашему вниманию похожие книги на «Industrial Data Analytics for Diagnosis and Prognosis» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Industrial Data Analytics for Diagnosis and Prognosis»

Обсуждение, отзывы о книге «Industrial Data Analytics for Diagnosis and Prognosis» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x