Sustainable Solutions for Environmental Pollution

Здесь есть возможность читать онлайн «Sustainable Solutions for Environmental Pollution» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Sustainable Solutions for Environmental Pollution: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Sustainable Solutions for Environmental Pollution»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Environmental pollution is one of the biggest problems facing our world today, in every country, region, and even down to local landfills. Not just solving these problems, but turning waste into products, even products that can make money, is a huge game-changer in the world of environmental engineering. Finding ways to make fuel and other products from solid waste, setting a course for the production of future biorefineries, and creating a clean process for generating fuel and other products are just a few of the topics covered in the groundbreaking new first volume in the two-volume set, 
.
The valorization of waste, including the creation of biofuels, turning waste cooking oil into green chemicals, providing sustainable solutions for landfills, and many other topics are also covered in this extensive treatment on the state of the art of this area in environmental engineering. 
This groundbreaking new volume in this forward-thinking set is the most comprehensive coverage of all of these issues, laying out the latest advances and addressing the most serious current concerns in environmental pollution. Whether for the veteran engineer or the student, this is a must-have for any library.

Sustainable Solutions for Environmental Pollution — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Sustainable Solutions for Environmental Pollution», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Figure 11 Overview of various valueadded products produced via - фото 2

Figure 1.1 Overview of various value-added products produced via electro-fermentation.

1.2 Fundamental Mechanisms

A system for EF consists of an anode and a cathode, and the chambers can be separated by an ion-exchange membrane (see Figure 1.2). The use of a membrane is optional; used when preventing product crossover is critical. Briefly describing the entire process, the EF comprises the fermentation of an energy-rich substrate, where the solid electrodes present in the EF system serves as inexhaustible electron donors or acceptors that does not limit the entire fermentation process (Jiang et al ., 2019; Moscoviz et al ., 2016). The EF system is generally connected with power sources (e.g., power supply, potentiostat, etc.), where the externally poised potential/voltage is utilized to regulate the fermentation pathways for pure and mixed cultures (Jiang et al ., 2019; Moscoviz et al ., 2016; Schievano et al ., 2016). Briefly speaking, the electrons are transferred between the fermentation medium and the bacteria (e.g., fermentative and/or electroactive), and between the bacteria and the electrodes (e.g., anode or cathode). The electron transfer process between bacteria and electrodes are known as extracellular electron transfer (EET). Depending on the type of fermentation, the EET can be outward (during anodic EF) and inward (during cathodic EF) (Gong et al ., 2020; Kracke et al ., 2018). Although EET mechanisms have not been studied exclusively for various EF processes, literature suggests that bi-directional EET can occur via multiple mechanisms, including direct electron transport via extracellular redox co-factors (e.g., cytochromes, and other redox proteins), nanowires, and mediators (Gong et al ., 2020; Kracke et al ., 2018).

Depending on the target product (e.g., final product more oxidized vs. reduced form than the initial substrate), the EF can be classified into two main types: (i) anodic electro-fermentation (AEF); and (ii) cathodic electro-fermentation (CEF). When the final product of EF is more oxidized form than the substrate (e.g., ethanol from glycerol), the working electrode acts as an anode and is used to dissipate the excess electrons, known as the AEF. On the other hand, if the final product is in a more reduced form than the substrate (e.g., butanol from glucose), then the working electrode acts as an electron donor, known as the CEF. The electron sinks during AEF are known to synthesize more adenisine triphospates (ATPs) through creating a proton gradient, while the electron sources during CEF have impacts on the generation of more reduced redox cofactors, such as NADH (Kracke and Krömer, 2014). Hence, both AEF and CEF can significantly enhance the entire fermentation performance (e.g., product selectivity, production rate and yield) (Xafenias et al ., 2017). Detail descriptions of underlying mechanisms or EF mechanisms can be found elsewhere (Gong et al ., 2020; Jiang et al ., 2019; Moscoviz et al ., 2016).

Figure 12 Mechanisms of electrofermentation a anodic electrofermentation - фото 3

Figure 1.2 Mechanisms of electro-fermentation: (a) anodic electro-fermentation; (b) cathodic electro-fermentation.

As discussed earlier, in most cases, the reactions and electron transfers associated with EF are usually performed via syntrophic interactions between the fermentative bacteria and electroactive bacteria (Jiang et al ., 2019; Moscoviz et al ., 2016). However, sometimes, none of the fermentative bacteria are electroactive (e.g., Clostridium species), in which, the redox mediators, such as neutral red (Choi et al ., 2012), methyl viologen (Kim and Kim, 1988), or ferricyanide (Xafenias et al ., 2017) are required during the fermentation to impact the extracellular ORP (Choi et al ., 2012; Kim and Kim, 1988; Sturm-Richter et al ., 2015). When the redox mediators are introduced, they can first, be oxidized or reduced by the fermentative bacteria, then they are recycled or recovered electrochemically by the anode or cathode electrodes (Moscoviz et al ., 2016). In this context, the redox mediators are used as electron shuttles, and this process is known as the mediated electron transfer (Gong et al ., 2020; Rabaey and Rozendal, 2010; Thrash and Coates, 2008). Furthermore, other studies demonstrated another way to add a redox mediator in CEF, such as using produced H 2at the cathode that can be further used as a one-way electron shuttle (Gong et al ., 2020; Xafenias et al ., 2015; Zhou et al ., 2013; Zhou et al ., 2015).

On the other hand, metabolically engineered fermentative bacterial strains are another feasible option, for instance, by adding the property of electroactivity (Moscoviz et al ., 2016). This approach has been confirmed by adopting the strains (e.g., c -type cytochromes CymA, MtrA, STC) from electroactive bacteria ( Shewanella oneidensis ) to fermentative bacteria ( Escherichia coli ), where the electron transfer process can be greatly improved (e.g., by 183%) (Sturm-Richter et al ., 2015). Alternatively, electroactive bacterial species (e.g., Shewanella oneidensis ) can also be engineered to utilize a variety range of substrates and organic wastes to further aid the whole EF processes (Flynn et al ., 2010).

1.3 Value-Added Products from Electro-Fermentation

To date, electro-fermentation has been investigated for a wide variety of value-added products, including carboxylates, alcohols, biopolymers, and other platform chemicals (see Table 1.1). This section reviews the studies related to EF for producing different value-added products.

Table 1.1 Summary of electro-fermentation and electro-selective fermentation for value-added bioproducts.

Product Feedstock Inoculum System configuration Total working volume (L) Temperature (°C)/initial pH Applied voltage/potential Working electrode Reference
Butanol Glucose C. pasteurianum Dual chamber 900 37/6.7 0-2.6 V Cathode (Mostafazadeh et al ., 2016)
Butanol Glucose Clostridium pasteurianum DSM 525 Dual chamber 900 37/6.5 +0.045 V vs. SHE Cathode (Choi et al ., 2014)
Ethanol Glycerol Clostridium cellobioparum , + G. sulfurreducens Dual chamber 190 30/6 0.24 V vs. Ag/AgCl Anode (Speers et al ., 2014)
Ethanol Glycerol Escherichia coli Dual chamber 50 37/7.4 −44 mV vs. SCE Anode (Sturm-Richter et al ., 2015)
Ethanol Cellobiose G. sulfurreducens + Cellulomonas uda Single chamber 1000 30/6.97 0.24 V vs. Ag/AgCl Anode (Awate et al ., 2017)
Ethanol Food waste Mixed culture Single chamber 400 30/6.8 - - (Chandrasekhar et al ., 2015) Acetone-Butanol-
Ethanol (ABE) Glucose C. acetobutylicum Dual chamber 240 37/6.8 -600 mV vs. Ag/AgCl Anode (Engel et al ., 2019)
1,3-propanediol Glycerol Mixed-culture + G. sulfurreducens pre-colonized cathode. Dual chamber 900 37/7 -900 mV vs. SCE Cathode (Moscoviz et al ., 2018)
1,3-propanediol Glycerol Mixed culture Dual chamber 520 21/6.9 −0.80 V to −1.10 V vs. SHE Cathode (Xafenias et al ., 2015)
1,3-propanediol Glycerol Clostridium pasteurianum DSM 525 Dual chamber 900 37/6.5 +0.045 V vs. SHE Cathode (Choi et al ., 2014)
Butyric acid Glucose Mixed culture Dual chamber 540 25/5.5 -700 mV vs. SHE Cathode (Paiano et al ., 2019)
3-hydroxypropionic acid Glycerol Recombinant Klebsiella pneumoniae L17 Dual chamber 620 37/6 +0.5 V vs. Ag/AgCl Anode (Kim et al ., 2017)
Mixed VFAs Off gases from fermentation (CO 2+H 2) Mixed culture acclimatized homoacetogens Dual chamber 400 37/6.5 -1.0 V vs. SHE Cathode (Zhou et al ., 2019)
Caproate Ethanol, acetate Mixed culture Dual chamber 240 37/7.2 −0.8 V and −1.1 V vs. Ag/ AgCl Cathode (Jiang et al ., 2020)
Iso-butyrate Glucose, ethanol, and acetate Mixed culture Dual chamber 540 -/5.6 -700 mV vs.SHE Cathode (Villano et al .,2017)
Lipid Microalgae biomass Scenedesmus acutus Dual chamber 340 30/7.5 -0.3 V vs.Ag/AgCl Anode (Liu et al ., 2019)
Lipid Microalgae biomass Scenedesmus acutus Dual chamber 200 25/7.0 -0.3 V vs.Ag/AgCl Anode (Liu et al ., 2020c)
Lipid Microalgae biomass Scenedesmus acutus Dual chamber 200 -/- - Anode (Liu et al ., 2020b)
Acetoin Lactate Shewanella oneidensis - 270 -/- 0 mV vs. NHE Anode (Bursac et al ., 2017)
Acetoin Glucose Escherichia coli Dual chamber 23 /-/ 0.2 mV vs. NHE - (Förster et al ., 2017)
Polyhydroxybutyrate (PHB) Glycerol Ralstonia eutropha H16 Single chamber 500 -/- 10 mA Anode (Lai & Lan, 2020)
L-lysine Glucose Corynebacterium glutamicum Dual chamber 360 20/7.0 -1.25 V Cathode (Xafenias et al ., 2017)
L-lysine Glucose Corynebacterium glutamicum Dual chamber 350 30/7.2 0.697 V vs. SHE Anode (Vassilev et al ., 2018)

1.3.1 Carboxylates

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Sustainable Solutions for Environmental Pollution»

Представляем Вашему вниманию похожие книги на «Sustainable Solutions for Environmental Pollution» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Sustainable Solutions for Environmental Pollution»

Обсуждение, отзывы о книге «Sustainable Solutions for Environmental Pollution» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x