Prof Carla Moreira - The Statistical Analysis of Doubly Truncated Data

Здесь есть возможность читать онлайн «Prof Carla Moreira - The Statistical Analysis of Doubly Truncated Data» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

The Statistical Analysis of Doubly Truncated Data: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «The Statistical Analysis of Doubly Truncated Data»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

A thorough treatment of the statistical methods used to analyze doubly truncated data
The Statistical Analysis of Doubly Truncated Data,
The Statistical Analysis of Doubly Truncated Data

The Statistical Analysis of Doubly Truncated Data — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «The Statistical Analysis of Doubly Truncated Data», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

With interval sampling the variable картинка 85is degenerated at картинка 86. This occurs in other sampling schemes too, in which картинка 87and картинка 88are certain subject‐specific event dates. An illustrative example is given by the Parkinson's Disease Data, see Section 1.4.5, where картинка 89is the individual age at blood sampling. When картинка 90is constant, the couple картинка 91falls on a line, and its joint density does not exist, even when the truncating variables may be continuous.

In other situations, the truncating variables The Statistical Analysis of Doubly Truncated Data - изображение 92and The Statistical Analysis of Doubly Truncated Data - изображение 93are not linked through the linear equation The Statistical Analysis of Doubly Truncated Data - изображение 94. For example, картинка 95and картинка 96could represent some random observation limits beyond which the variable of interest картинка 97can not be sampled or detected. Situations like this occur for example in Astronomy, as it is illustrated in Section 1.4.4.

With random double truncation, both large and small values of картинка 98are observed in principle with a relatively small probability. However, the real observational bias for картинка 99varies from application to application, depending on the joint distribution of We will see for example that the probability of sampling a value namely - фото 100. We will see, for example, that the probability of sampling a value namely may be roughly constant inducing no observational bias or that it - фото 101, namely may be roughly constant inducing no observational bias or that it may be - фото 102, may be roughly constant, inducing no observational bias; or that it may be roughly decreasing, indicating the dominance of the right‐truncation bias relative to the left‐truncation bias.

Another issue of relevance is that of the identifiability of the distribution of картинка 103. Intuitively it is clear that with doubly truncated data it is only possible to estimate the distribution of The Statistical Analysis of Doubly Truncated Data - изображение 104conditional on The Statistical Analysis of Doubly Truncated Data - изображение 105, where картинка 106and картинка 107denote respectively the lower and upper endpoints of the supports of картинка 108and картинка 109(see Chapter 2for details). This may have important practical consequences, as we will see. On the other hand, in applications with doubly truncated survival data the estimates correspond to the susceptible population for which the terminal event of interest is sure. This is in contrast to the standard analysis of survival times where a portion of the individuals may belong to the so‐called cured fraction , or immunes. This should be taken into account when interpreting the results from the analysis.

An important difference of double truncation when compared to one‐sided truncation is that, with doubly truncated data, the NPMLE of the probability distribution has no explicit form. In fact, the NPMLE may be non‐unique and even non‐existing (Xiao and Hudgens, 2019); see Chapter 2. Several iterative algorithms that have been proposed to compute the NPMLE in practice (Efron and Petrosian, 1999; Shen, 2010) will be reviewed in this book, and simulated and real data examples will be analysed with existing libraries of the software R. Semiparametric and parametric alternatives to the NPMLE will be introduced too; these approaches avoid some of the aforementioned potential issues of non‐uniqueness or non‐existence of the NPMLE, also reducing the variance at the price of introducing some bias in estimation. Also, resampling procedures, testing problems, smoothing methods, regression models and multi‐state data analysis under double truncation will be presented.

1.4 Real Data Examples

In this section we introduce the datasets that will be used throughout the book for illustration purposes. All of them suffer from double truncation. These examples are available within the last update of the DTDApackage (Moreira et al., 2021a).

1.4.1 Childhood Cancer Data

The Childhood Cancer Data were gathered from the IPO ( Instituto Português de Oncologia ) of Porto, Portugal, by the RORENO (Registro Oncológico do Norte) service. The information corresponds to all children diagnosed from cancer between 1 January 1999 ( картинка 110) and 31 December 2003 ( картинка 111) in the region of North Portugal, which includes five districts: Porto, Braga, Bragança, Vila Real and Viana do Castelo. The variable of main interest картинка 112is the age at diagnosis which, by definition of childhood cancer, is supported on the картинка 113interval (time in years). The number of cases was 409. However, for three cases the value of картинка 114was not available, so we only consider the картинка 115children who report complete information.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «The Statistical Analysis of Doubly Truncated Data»

Представляем Вашему вниманию похожие книги на «The Statistical Analysis of Doubly Truncated Data» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «The Statistical Analysis of Doubly Truncated Data»

Обсуждение, отзывы о книге «The Statistical Analysis of Doubly Truncated Data» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x