2 Chapter 3Figure 3.1 (Childhood Cancer Data, Example 3.2.1). Left plot: nonparametric ...Figure 3.2 (Childhood Cancer Data, Example 3.3.4). Nonparametric (black line...Figure 3.3 (AIDS Blood Transfusion Data, Example 3.3.5). Nonparametric (blac...Figure 3.4 (AIDS Blood Transfusion Data, Example 3.3.5). Left plot: nonparam...Figure 3.5 (Simulated scenario I, Example 3.4.1). Density estimates of
for...Figure 3.6 (Simulated scenario II, Example 3.4.1). Density estimates of
fo...Figure 3.7 (Quasar Data, Example 3.4.2). Left plot: sampling bias for the qu...Figure 3.8 (AIDS Blood Transfusion Data, Example 3.4.3). Left plot: nonparam...Figure 3.9 (Childhood Cancer Data from Example 3.5.1 and AIDS Blood Transfus...Figure 3.10 (Simulated scenarios I and II, Example 3.6.3). True biasing func...Figure 3.11 (AIDS Blood Transfusion Data, Example 3.6.4). Kernel hazard esti...Figure 3.12 (Acute Coronary Syndrome Data, Example 3.6.5). Kernel hazard est...Figure 3.13 (Acute Coronary Syndrome Data, Example 3.6.5). Biasing function ...
3 Chapter 4Figure 4.1 Conditional cdfs
and
in model RD (dashed lines), and ordinary...Figure 4.2 Regression line for the transformed response
in model RC (dashe...Figure 4.3 (Parkinson's Disease Data, Example 4.1.1). Conditional cdfs for t...Figure 4.4 (AIDS Blood Transfusion Data, Example 4.1.4). Consistent estimati...Figure 4.5 (RD and RC model with simulated scenario II, Example 4.3.1). Left...Figure 4.6 (AIDS Blood Transfusion Data, Example 4.3.2). Ordinary least squa...Figure 4.7 (AIDS Blood Transfusion Data. Example 4.4.2). Nonparametric regre...
4 Chapter 5Figure 5.1 Density functions for the two groups in Example 5.1.2, based on t...Figure 5.2 (AIDS Blood Transfusion Data, Example 5.1.3). Left plot: NPMLE of...Figure 5.3 (AIDS Blood Transfusion Data, Example 5.1.3). Empirical survival ...Figure 5.4 (Childhood Cancer Data, Example 5.2.4). Left plot: sampling proba...Figure 5.5 (Simulated competing risks data, Example 5.2.5). Left plot: true ...Figure 5.6 (Simulated competing risks data, Example 5.2.5). Left plot: boxpl...Figure 5.7 (Simulated competing risks data, Example 5.2.5). Left plot: boxpl...Figure 5.8 (Childhood Cancer Data, Example 5.2.6). Conditional cumulative in...Figure 5.9 Histograms for the conditional Kendall's Tau, corresponding to 10...Figure 5.10 Scatterplot of
observations
simulated from the Clayton copul...Figure 5.11 Scatterplot of
observations
simulated from the Clayton copul...Figure 5.12 (Simulated scenario I with dependent truncation, Example 5.4.2)....Figure 5.13 (AIDS Blood Transfusion Data and Childhood Cancer Data, Example ...Figure 5.14 (AIDS Blood Transfusion Data, Example 5.4.3). Logarithm of the l...
1 Cover Page
2 Table of Contents
3 Title Page The Statistical Analysis of Doubly Truncated Data: With Applications in R Jacobo de Uña‐Álvarez, Carla Moreira and Rosa M. Crujeiras
4 Copyright
5 Dedication
6 Preface
7 List of Abbreviations
8 Notation
9 Begin Reading
10 A: Packages and Functions in R
11 Index
12 End User License Agreement
1 ii
2 iii
3 iv
4 v
5 xi
6 xii
7 xiii
8 xiv
9 xv
10 xvi
11 1
12 2
13 3
14 4
15 5
16 6
17 7
18 8
19 9
20 10
21 11
22 13
23 14
24 15
25 16
26 17
27 18
28 19
29 20
30 21
31 22
32 23
33 24
34 25
35 26
36 27
37 28
38 29
39 30
40 31
41 32
42 33
43 34
44 35
45 36
46 37
47 38
48 39
49 40
50 41
51 42
52 43
53 44
54 45
55 46
56 47
57 48
58 49
59 50
60 51
61 52
62 53
63 54
64 55
65 56
66 57
67 58
68 59
69 60
70 61
71 62
72 63
73 64
74 65
75 66
76 67
77 69
78 70
79 71
80 72
81 73
82 74
83 75
84 76
85 77
86 78
87 79
88 80
89 81
90 82
91 83
92 84
93 85
94 86
95 87
96 88
97 89
98 90
99 91
100 92
101 93
102 94
103 95
104 96
105 97
106 98
107 99
108 100
109 101
110 102
111 103
112 104
113 105
114 106
115 107
116 109
117 110
118 111
119 112
120 113
121 114
122 115
123 116
124 117
125 118
126 119
127 120
128 121
129 122
130 123
131 124
132 125
133 126
134 127
135 128
136 129
137 131
138 132
139 133
140 134
141 135
142 136
143 137
144 138
145 139
146 140
147 141
148 142
149 143
150 144
151 145
152 146
153 147
154 148
155 149
156 150
157 151
158 152
159 153
160 154
161 155
162 156
163 157
164 158
165 159
166 160
167 161
168 162
169 163
170 165
171 166
172 167
173 168
174 169
175 170
176 171
177 173
178 174
179 175
180 176
WILEY SERIES IN PROBABILITY AND STATISTICS
Established by Walter A. Shewhart and Samuel S. Wilks
Editors: David J. Balding, Noel A. C. Cressie, Garrett M. Fitzmaurice, Geof H. Givens, Geert Molenberghs, David W. Scott, Adrian F. M. Smith, Ruey S. Tsay
Editors Emeriti: Harvey Goldstein, J. Stuart Hunter, Iain M. Johnstone, Joseph B. Kadane, Jozef L. Teugels
The Wiley Series in Probability and Statisticsis well established and authoritative. It covers many topics of current research interest in both pure and applied statistics and probability theory. Written by leading statisticians and institutions, the titles span both state‐of‐the‐art developments in the field and classical methods.
Reflecting the wide range of current research in statistics, the series encompasses applied, methodological and theoretical statistics, ranging from applications and new techniques made possible by advances in computerized practice to rigorous treatment of theoretical approaches. This series provides essential and invaluable reading for all statisticians, whether in academia, industry, government, or research.
Читать дальше