6 Chapter 6Figure 6.1 Flowchart of a general optimization algorithm.Figure 6.2 The pseudocode for Firefly Algorithm [8].Figure 6.3 Flowchart of Firefly Algorithm [13].Figure 6.4 Decision of movement of firefly [44].Figure 6.5 Landscape of a function with two equal global maxima.Figure 6.6 The initial locations of 25 fireflies (left) and their final location...Figure 6.7 Image segmentation example [51].Figure 6.8 Truss structure in bridges [52].Figure 6.9 Taxonomy of firefly applications [43].
7 Chapter 7Figure 7.1 Flowers showing cross-pollination. Picture source: https://vivadiffer...Figure 7.2 Flower showing self-pollination process. Picture source: https://viva...Figure 7.3 Flow chart of flower pollination algorithm.Figure 7.4 Fifty steps of Levy flights. Picture source: https://www.researchgate...
8 Chapter 8Figure 8.1 The flow chart of amalgamation of data mining with nature-inspired co...Figure 8.2 Swarm intelligence: (a) ants discovering two paths, selected the shor...Figure 8.3 The flow chart of swarm intelligence-based algorithms [35].Figure 8.4 Ant colony optimization algorithm processes. N and S depict nest and ...Figure 8.5 The generalized flow chart for particle swarm optimization [11].Figure 8.6 The flow chart of cuckoo algorithm.Figure 8.7 Species depicting migration with the help of islands via floating, fl...Figure 8.8 Cat swarm optimization mainly inspired by the observations of cat. Re...Figure 8.9 The schematic view of evolutionary algorithm. Ref: Internet.Figure 8.10 Genetic programming assisting in converting Darwinism into algorithm...Figure 8.11 The basic structure of artificial neural network.Figure 8.12 Membrane computing model Ref: Internet.Figure 8.13 The multi-layer structure of the immune system Ref: Internet.
9 Chapter 9Figure 9.1 Flow diagram of optimization-based HWACWMF.Figure 9.2 Sample standard test images. (i) Case 189U1/Cyst (US image 1); (ii) C...Figure 9.3 Simulation results of denoising algorithms at noise density 40% in US...Figure 9.4 Simulation results of denoising algorithms at noise density 40% in MR...
10 Chapter 10Figure 10.1 K-means centroid computation.Figure 10.2 Flow chart of particle swarm optimization process.Figure 10.3 Flow chart of firefly algorithm process.Figure 10.4 Classification accuracy for various clustering methods.Figure 10.5 Specificity for various clustering methods in Wisconsin dataset.Figure 10.6 Sensitivity for various clustering methods in Wisconsin dataset.Figure 10.7 F-measure for various clustering methods in Wisconsin dataset.
11 Chapter 11Figure 11.1 Types of meta-heuristic algorithms.Figure 11.2 Types of Cuckoo search algorithm.Figure 11.3 Performance measure of Cuckoo Search Algorithm based on various para...Figure 11.4 Major categories of application of CS.Figure 11.5 Some specific applications of CS [9].Figure 11.6 PV system using MPPT with CSA.
12 Chapter 12Figure 12.1 Categories of traditional classification of NIAs.Figure 12.2 TRIZ problem-solution approach [19].Figure 12.3 NIA + TRIZ approach [19].Figure 12.4 End goal–based classification of NIA.Figure 12.5 Diagram for fruit fly optimization algorithm FOA.Figure 12.6 Diagram for bat algorithm.Figure 12.7 Procedure of improved genetic algorithm.Figure 12.8 Flow chart of genetic algorithm to solve 0-1 knapsack problem.Figure 12.9 Execution time comparison between dynamic programming and genetic al...
1 Chapter 1 Table 1.1 List of applications of various algorithms.
2 Chapter 2Table 2.1 Factor analysis [40].Table 2.2 Performance evaluation of ABO for banking customer profile and cancer ...Table 2.3 Performance evaluation of GA and ABO for banking customer profile and ...
3 Chapter 3Table 3.1 Size of instances that can be solved by exact algorithms.
4 Chapter 4Table 4.1 The best chosen parameters for the hybrid bat-genetic algorithm.Table 4.2 QASK modulation setup.Table 4.3 Filter coefficients of the proposed filter bank “KARELET”.Table 4.4 Properties of KARELET filters.Table 4.5 Percentage of energy retained after KARELET decomposition and coeffici...Table 4.6 Results obtained.
5 Chapter 6Table 6.1 Parameters and notations of Firefly Algorithm [12].
6 Chapter 7Table 7.1 Characteristics of FPA.Table 7.2 Various types of applications of FPA [19].
7 Chapter 9Table 9.1 Observation of PSNR values for various filtering algorithms for differ...Table 9.2 Observation of RMSE for various filtering algorithms for different sam...Table 9.3 Observation of SSIM for various filtering algorithms for different sam...Table 9.4 Difference in average PSNR between HWACWMF and optimizationbased algor...
8 Chapter 10Table 10.1 Performance of various PSO optimized classifiers.
9 Chapter 12Table 12.1 Acronyms used in this chapter.Table 12.2 Biology-based algorithms.Table 12.3 Non-biology–based algorithms.
1 v
2 ii
3 iii
4 iv
5 xv
6 xvi
7 xvii
8 xviii
9 1
10 2
11 3
12 4
13 5
14 6
15 7
16 8
17 9
18 10
19 11
20 12
21 13
22 14
23 15
24 16
25 17
26 18
27 19
28 20
29 21
30 22
31 23
32 24
33 25
34 26
35 27
36 28
37 29
38 30
39 31
40 32
41 33
42 34
43 35
44 36
45 37
46 38
47 39
48 40
49 41
50 42
51 43
52 44
53 45
54 46
55 47
56 48
57 49
58 50
59 51
60 52
61 53
62 54
63 55
64 56
65 57
66 58
67 59
68 60
69 61
70 62
71 63
72 64
73 65
74 67
75 68
76 69
77 70
78 71
79 72
80 73
81 74
82 75
83 76
84 77
85 78
86 79
87 80
88 81
89 82
90 83
91 84
92 85
93 86
94 87
95 88
96 89
97 90
98 91
99 92
100 93
101 94
102 95
103 96
104 97
105 98
106 99
107 100
108 101
109 102
110 103
111 104
112 105
113 106
114 107
115 108
116 109
117 110
118 111
119 112
120 113
121 114
122 115
123 116
124 117
125 118
126 119
127 120
128 121
129 122
130 123
131 124
132 125
133 126
134 127
135 128
136 129
137 130
138 131
139 132
140 133
141 134
142 135
143 136
144 137
145 138
146 139
147 140
148 141
149 142
150 143
151 144
152 145
153 146
154 147
155 148
156 149
157 150
158 151
159 152
160 153
161 154
162 155
163 156
164 157
165 158
166 159
167 160
168 161
169 162
170 163
171 164
172 165
173 166
174 167
175 168
176 169
177 170
178 171
179 172
180 173
181 174
182 175
183 176
184 177
185 178
186 179
187 180
188 181
189 182
190 183
191 184
192 185
193 186
194 187
195 188
196 189
197 190
198 191
199 192
200 193
201 194
202 195
203 196
204 197
205 198
206 199
207 200
208 201
209 202
210 203
211 204
212 205
213 206
214 207
215 208
216 209
217 210
218 211
219 212
220 213
221 214
222 215
223 216
224 217
225 218
226 219
227 220
228 221
229 222
230 223
231 224
Читать дальше