Nature-Inspired Algorithms and Applications

Здесь есть возможность читать онлайн «Nature-Inspired Algorithms and Applications» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Nature-Inspired Algorithms and Applications: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Nature-Inspired Algorithms and Applications»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

The purpose of designing this book is to portray certain practical applications of nature-inspired computation in machine learning for the better understanding of the world around us. The focus is to portray and present recent developments in the areas where nature- inspired algorithms are specifically designed and applied to solve complex real-world problems in data analytics and pattern recognition, by means of domain-specific solutions. Various nature-inspired algorithms and their multidisciplinary applications (in mechanical engineering, electrical engineering, machine learning, image processing, data mining and wireless network domains are detailed, which will make this book a handy reference guide.

Nature-Inspired Algorithms and Applications — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Nature-Inspired Algorithms and Applications», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Group coursing is also the mimicking behavior in count to the social behavior of grey wolves. Notwithstanding the social pecking order of wolves, bunch chasing is another fascinating social conduct of dim wolves. The algorithm of GWO is a moderately innovative populace-based technique of optimization that has the benefit of minimum parameter control, ability of robust optimization, and simple execution.

1.5.1.4.17 Elephant Herding Optimization

Elephant Herding Optimization (EHO) algorithm is one of the metaheuristic approach swarm-based search algorithms that is utilized to explain various problems of optimization and also utilized benchmark, localization based on energy, services selection in QOS web service compositions, appliance scheduling in smart grid identification, and PID controller tuning– based problems. The algorithm is inspired by the performance of group of elephant in the wild, in which elephants live in a group with a female elephant called leader matriarch, while the male are disconnected from the group when they are adulthood. The EHO algorithm is based on the models of collecting behaviors of elephants in two procedures. They are clan update and separation. Clan update is referred as updating the elephants and matriarch present location in every clan and separation is referred as enhancing the populace range in the subsequent phase of search.

Table 1.1 List of applications of various algorithms.

S. no. Algorithm Areas of application
1. Memetic algorithm Multi-dimensional knapsack problem, pattern recognition, feature/gene selection, training of artificial neural networks, clustering of gene expression profiles, traveling salesman problem, Robotic motion planning
2. Genetic algorithm Allocation of document for a distributed system, PC robotized plan, server farm/server center, code breaking, criminological science, robot behavior, PC design, Bayesian inference, AI, game hypothesis
3. Ant colony optimization algorithm Problems of generalized assignment and the set covering, classification problems, Ant Net for organized directing and multiple knapsack Problem
4. Particle swarm optimization algorithm Combination with a back engendering calculation, to prepare a neural system framework structure, multi-target optimization, classification, image clustering and image clustering, image processing, automated applications, dynamic, pattern recognition, image segmentation, robotic applications, time frequency analysis, decision-making, simulation, and identification
5. Harmony search algorithm Power systems, power systems, transportation, medical science and robotics, industry and signal and image processing
6. Artificial bee colony algorithm Problem of medical pattern classification, network reconfiguration, minimum spanning tree, train neural networks, radial distribution system of network reconfiguration, and train neural networks
7. Firefly algorithm Semantic web composition, classification and clustering problems, neural network, fault detection, digital image compression, feature selection, digital image processing, scheduling problems, and traveling salesman problem
8. Bat algorithm Image processing, clustering, classification, data mining, continuous optimization, problem inverse and estimation of parameter, combination scheduling and optimization, and fuzzy logic

The working of EHO is based on that every elephant in clan is updated by utilizing group data through clan by the procedure of updating, and afterward, the poorest elephant is supplanted by randomly produced elephant individual through the procedure of updating. EHO can discover much improved solutions on more problems of benchmark. Problems of benchmark are a lot of different types of problem of optimization that comprises of different kinds of aptitudes that utilized in testing and the estimation is verified and described. Then, the execution of estimation enhances the algorithm under various ecological conditions.

Table 1.1lists the various applications of NIC algorithms.

References

1. Siddique, N. and Adeli, H., Nature-Inspired Computing: An Overview and Some Future Directions. Cognit. Comput ., 7, 706–714, 2015.

2. Wang, L., Kang, Q., Wu, Q.-d., Nature-inspired Computation — Effective Realization of Artificial Intelligence. Syst. Eng. - Theory Pract ., 27, 126–134, 2007, 10.1016/S1874-8651(08)60034-4.

3. Fan, X., Sayers, W., Zhang, S. et al ., Review and Classification of Bio-inspired Algorithms and Their Applications. J. Bionic Eng ., 17, 611–631, 2020, https://doi.org/10.1007/s42235-020-0049-9.

4. Nguyen, B.H., Xue, B., Zhang, M., A survey on swarm intelligence approaches to feature selection in data mining. Swarm Evol. Comput ., 54, 100663, 2020.

5. Neri, F. and Cotta, C., Memetic algorithms and memetic computing optimization: A literature review. Swarm Evol. Comput ., 2, 1–14, 2012, 10.1016/j. swevo.2011.11.003.

6. Albuquerque, I.M.R., Nguyen, B.H., Xue, B., Zhang, M., A Novel Genetic Algorithm Approach to Simultaneous Feature Selection and Instance Selection. 2020 IEEE Symposium Series on Computational Intelligence (SSCI) , Canberra, ACT, Australia, pp. 616–623, 2020.

7. Ding, X. et al ., An Improved Ant Colony Algorithm for Optimized Band Selection of Hyperspectral Remotely Sensed Imagery. IEEE Access , 8, 25789– 25799, 2020.

8. Xie, X.-F., Zhang, W.-J., Yang, Z.-L., Social cognitive optimization for nonlinear programming problems. Proceedings. International Conference on Machine Learning and Cybernetics , Beijing, China, vol. 2, pp. 779–783, 2002.

9. Pham, D.T., Afshin, G., Ebubekir, K., Sameh, O., Sahra, R., Zaidi, M., The Bees Algorithm - A Novel Tool for Complex Optimisation Problems. Proceedings of IPROMS 2006 Conference , 10.1016/B978-008045157-2/50081-X.

10. He, S., Wu, Q.H., Saunders, J.R., Group Search Optimizer: An Optimization Algorithm Inspired by Animal Searching Behavior. IEEE Trans. Evol. Comput ., 13, 5, 973–990, Oct. 2009.

11. Rabanal, P., Rodríguez, I., Rubio, F., Solving Dynamic TSP by Using River Formation Dynamics. 2008 Fourth International Conference on Natural Computation , Jinan, pp. 246–250, 2008.

12. Li, J., Guo, L., Li, Y., Liu, C., Enhancing Elephant Herding Optimization with Novel Individual Updating Strategies for Large-Scale Optimization Problems. Mathematics , 7, 395, 2019, 10.3390/math7050395.

13. Almufti, S.M., Asaad, R.R., Salim, B.W., Review on Elephant Herding Optimization Algorithm Performance in Solving Optimization Problems. Int. J. Eng. Technol ., 7, 6109–6114, 2018, 10.14419/ijet.v7i4. 23127.

14. Ma, L., Wang, R., Chen, Y., The Social Cognitive Optimization Algorithm: Modifiability and Application. 2010 International Conference on E-Product E-Service and E-Entertainment , Henan, pp. 1–4, 2010.

15. Redlarski, G., Pałkowski, A., Dąbkowski, M., Using River Formation Dynamics Algorithm in Mobile Robot Navigation. Solid State Phenom ., 198, 138–143, 2013, 10.4028/ www.scientific.net/SSP.198.138.

16. Kang, Q., Lan, T., Yan, Y., Wang, L., Wu, Q., Group search optimizer based optimal location and capacity of distributed generations. Neurocomputing , 78, 55–63, 2012, 10.1016/j.neucom.2011.05.030.

17. Liu, F., Xu, X.-T., Li, L.-J., Wu, Q.H., The Group Search Optimizer and its Application on Truss Structure Design. 2008 Fourth International Conference on Natural Computation , Jinan, pp. 688–692, 2008.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Nature-Inspired Algorithms and Applications»

Представляем Вашему вниманию похожие книги на «Nature-Inspired Algorithms and Applications» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Nature-Inspired Algorithms and Applications»

Обсуждение, отзывы о книге «Nature-Inspired Algorithms and Applications» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x