Pradeep Singh - Fundamentals and Methods of Machine and Deep Learning

Здесь есть возможность читать онлайн «Pradeep Singh - Fundamentals and Methods of Machine and Deep Learning» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Fundamentals and Methods of Machine and Deep Learning: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Fundamentals and Methods of Machine and Deep Learning»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

FUNDAMENTALS AND METHODS OF MACHINE AND DEEP LEARNING
The book provides a practical approach by explaining the concepts of machine learning and deep learning algorithms, evaluation of methodology advances, and algorithm demonstrations with applications.
Audience

Fundamentals and Methods of Machine and Deep Learning — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Fundamentals and Methods of Machine and Deep Learning», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Figure 26A highlevel representation of stacking 28 Efficiency Analysis - фото 21

Figure 2.6A high-level representation of stacking.

2.8 Efficiency Analysis

The efficiency achieved by the considered ensemble machine learning techniques, i.e., Bayes optimal classifier, bagging, boosting, BMA, bucket of models, and tacking, is compared toward the performance metrics, i.e., accuracy, throughput, execution time, response time, error rate, and learning rate [30]. From the analysis, it is observed that the efficiency achieved by Bayesian model combination, stacking, and Bayesian model combination are high compared to other ensemble models considered for identification of zonotic diseases.

Technique Accuracy Throughput Execution time Response time Error rate Learning rate
Bayes optimal classifier Low Low High Medium Medium Low
Bagging Low Medium Medium High Low Low
Boosting Low Medium High High High Low
Bayesian model averaging High High Medium Medium Low Low
Bayesian model combination High High Low Low Low High
Bucket of models Low Low High Medium Medium Low
Stacking High High Low Low low Medium

2.9 Conclusion

This chapter provides introduction to zonotic diseases, symptoms, challenges, and causes. Ensemble machine learning uses multiple machine learning algorithms to identify the zonotic diseases in early stage itself. Detailed analysis of some of the potential ensemble machine learning algorithms, i.e., Bayes optimal classifier, bootstrap aggregating (bagging), boosting, BMA, Bayesian model combination, bucket of models, and stacking are discussed with respective architecture, advantages, and application areas. From the analysis, it is observed that the efficiency achieved by Bayesian model combination, stacking, and Bayesian model combination are high compared to other ensemble models considered for identification of zonotic diseases.

References

1. Allen, T., Murray, K.A., Zambrana-Torrelio, C., Morse, S.S., Rondinini, C., Di Marco, M., Daszak, P., Global hotspots and correlates of emerging zoo-notic diseases. Nat. Commun ., 8 , 1, 1–10, 2017.

2. Han, B.A., Schmidt, J.P., Bowden, S.E., Drake, J.M., Rodent reservoirs of future zoonotic diseases. Proc. Natl. Acad. Sci ., 112 , 22, 7039–7044, 2015.

3. Salata, C., Calistri, A., Parolin, C., Palu, G., Coronaviruses: a paradigm of new emerging zoonotic diseases. Pathog. Dis ., 77 , 9, ftaa006, 2019.

4. Mills, J.N., Gage, K.L., Khan, A.S., Potential influence of climate change on vector-borne and zoonotic diseases: a review and proposed research plan. Environ. Health Perspect ., 118 , 11, 1507–1514, 2010.

5. Ardabili, S., Mosavi, A., Várkonyi-Kóczy, A.R., Advances in machine learning modeling reviewing hybrid and ensemble methods, in: International Conference on Global Research and Education , 2019, September, Springer, Cham, pp. 215–227.

6. Gao, X., Shan, C., Hu, C., Niu, Z., Liu, Z., An adaptive ensemble machine learning model for intrusion detection. IEEE Access , 7 , 82512–82521, 2019.

7. Yacchirema, D., de Puga, J.S., Palau, C., Esteve, M., Fall detection system for elderly people using IoT and ensemble machine learning algorithm. Pers. Ubiquitous Comput ., 23 , 5–6, 801–817, 2019.

8. Zewdie, G.K., Lary, D.J., Levetin, E., Garuma, G.F., Applying deep neural networks and ensemble machine learning methods to forecast airborne ambrosia pollen. Int. J. Environ. Res. Public Health , 16 , 11, 1992, 2019.

9. Dang, Y., A Comparative Study of Bagging and Boosting of Supervised and Unsupervised Classifiers For Outliers Detection (Doctoral dissertation), Wright State University, Dayton, Ohio, United States, 2017.

10. Wiens, J. and Shenoy, E.S., Machine learning for healthcare: on the verge of a major shift in healthcare epidemiology. Clin. Infect. Dis ., 66 , 1, 149–153, 2018.

11. Bollig, N., Clarke, L., Elsmo, E., Craven, M., Machine learning for syndromic surveillance using veterinary necropsy reports. PLoS One , 15 , 2, e0228105, 2020.

12. Shen, X., Zhang, J., Zhang, X., Meng, J., Ke, C., Sea ice classification using Cryosat-2 altimeter data by optimal classifier–feature assembly. IEEE Geosci. Remote Sens. Lett ., 14 , 11, 1948–1952, 2017.

13. Dalton, L.A. and Dougherty, E.R., Optimal classifiers with minimum expected error within a Bayesian framework—Part II: properties and performance analysis. Pattern Recognit ., 46 , 5, 1288–1300, 2013.

14. Boughorbel, S., Jarray, F., El-Anbari, M., Optimal classifier for imbalanced data using Matthews Correlation Coefficient metric. PLoS One , 12 , 6, e0177678, 2017.

15. Hassan, A.R., Siuly, S., Zhang, Y., Epileptic seizure detection in EEG signals using tunable-Q factor wavelet transform and bootstrap aggregating. Comput. Methods Programs Biomed ., 137 , 247–259, 2016.

16. Hassan, A.R. and Bhuiyan, M.I.H., Computer-aided sleep staging using complete ensemble empirical mode decomposition with adaptive noise and bootstrap aggregating. Biomed. Signal Process. Control , 24 , 1–10, 2016.

17. Pino-Mejías, R., Jiménez-Gamero, M.D., Cubiles-de-la-Vega, M.D., Pascual-Acosta, A., Reduced bootstrap aggregating of learning algorithms. Pattern Recognit. Lett ., 29 , 3, 265–271, 2008.

18. Hinne, M., Gronau, Q.F., van den Bergh, D., Wagenmakers, E.J., A conceptual introduction to Bayesian model averaging. Adv. Methods Pract. Psychol. Sci ., 3 , 2, 200–215, 2020.

19. Ji, L., Zhi, X., Zhu, S., Fraedrich, K., Probabilistic precipitation forecasting over East Asia using Bayesian model averaging. Weather Forecasting , 34 , 2, 377–392, 2019.

20. Liu, Z. and Merwade, V., Separation and prioritization of uncertainty sources in a raster based flood inundation model using hierarchical Bayesian model averaging. J. Hydrol ., 578 , 124100, 2019.

21. Isupova, O., Li, Y., Kuzin, D., Roberts, S.J., Willis, K., Reece, S., Computer Science, Mathematics, BCCNet: Bayesian classifier combination neural network. arXiv preprint arXiv:1811.12258 , 8, 1–5, 2018.

22. Yang, J., Wang, J., Tay, W.P., Using social network information in community-based Bayesian truth discovery. IEEE Trans. Signal Inf. Process. Networks , 5 , 3, 525–537, 2019.

23. Yang, J., Wang, J., Tay, W.P., IEEE Transactions on Signal and Information Processing over Networks, Using Social Network Information in Bayesian Truth Discovery. arXiv preprint arXiv:1806.02954 , 5, 525–537, 2018.

24. Dadhich, S., Sandin, F., Bodin, U., Andersson, U., Martinsson, T., Field test of neural-network based automatic bucket-filling algorithm for wheel-loaders. Autom. Constr ., 97 , 1–12, 2019.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Fundamentals and Methods of Machine and Deep Learning»

Представляем Вашему вниманию похожие книги на «Fundamentals and Methods of Machine and Deep Learning» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Fundamentals and Methods of Machine and Deep Learning»

Обсуждение, отзывы о книге «Fundamentals and Methods of Machine and Deep Learning» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x