High-Performance Materials from Bio-based Feedstocks
Здесь есть возможность читать онлайн «High-Performance Materials from Bio-based Feedstocks» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.
- Название:High-Performance Materials from Bio-based Feedstocks
- Автор:
- Жанр:
- Год:неизвестен
- ISBN:нет данных
- Рейтинг книги:5 / 5. Голосов: 1
-
Избранное:Добавить в избранное
- Отзывы:
-
Ваша оценка:
- 100
- 1
- 2
- 3
- 4
- 5
High-Performance Materials from Bio-based Feedstocks: краткое содержание, описание и аннотация
Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «High-Performance Materials from Bio-based Feedstocks»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.
High-Performance Materials from Bio-based Feedstocks
The latest advancements in the production, properties, and performance of bio-based feedstock materials
www.wiley.com/go/rrs High-Performance Materials from Bio-based Feedstocks
High-Performance Materials from Bio-based Feedstocks
High-Performance Materials from Bio-based Feedstocks — читать онлайн ознакомительный отрывок
Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «High-Performance Materials from Bio-based Feedstocks», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.
Интервал:
Закладка:
23 23. Chen, W., Fang, Y., Li, K. et al. (2020). Bamboo wastes catalytic pyrolysis with N‐doped biochar catalyst for phenols products. Applied Energy 260: 114242. https://doi.org/10.1016/j.apenergy.2019.114242.
24 24. Qian, K., Kumar, A., Bellmer, D. et al. (2015). Physical properties and reactivity of char obtained from downdraft gasification of sorghum and eastern red cedar. Fuel 143: 383–389. https://doi.org/10.1016/j.fuel.2014.11.054.
25 25. Wang, S., Dai, G., Yang, H. et al. (2017). Lignocellulosic biomass pyrolysis mechanism: a state‐of‐the‐art review. Progress in Energy and Combustion Science 62: 33–86. https://doi.org/10.1016/j.pecs.2017.05.004.
26 26. Shen, Y. (2018). Rice husk‐derived activated carbons for adsorption of phenolic compounds in water. Global Challenges 2 (12): 1800043. https://doi.org/10.1002/gch2.201800043.
27 27. Steurer, E. and Ardissone, G. (2015). Hydrothermal carbonization and gasification technology for electricity production using biomass. Energy Procedia 79: 47–54. https://doi.org/10.1016/j.egypro.2015.11.473.
28 28. Rashidi, N.A., Yusup, S., Ahmad, M.M. et al. (2012). Activated carbon from the renewable agricultural residues using single step physical activation: a preliminary analysis. APCBEE Procedia 3: 84–92. https://doi.org/10.1016/j.apcbee.2012.06.051.
29 29. Biswas, B., Pandey, N., Bisht, Y. et al. (2017). Pyrolysis of agricultural biomass residues: comparative study of corn cob, wheat straw, rice straw and rice husk. Bioresource Technology 237: 57–63. https://doi.org/10.1016/j.biortech.2017.02.046.
30 30. Huff, M.D., Kumar, S., and Lee, J.W. (2014). Comparative analysis of pinewood, peanut shell, and bamboo biomass derived biochars produced via hydrothermal conversion and pyrolysis. Journal of Environmental Management 146: 303–308. https://doi.org/10.1016/j.jenvman.2014.07.016.
31 31. Rahman, M.M., Awang, M., Mohosina, B.S. et al. (2012). Waste palm shell converted to high efficient activated carbon by chemical activation method and its adsorption capacity tested by water filtration. APCBEE Procedia 1: 293–298. https://doi.org/10.1016/j.apcbee.2012.03.048.
32 32. Bader, N. and Ouederni, A. (2016). Optimization of biomass‐based carbon materials for hydrogen storage. Journal of Energy Storage 5: 77–84. https://doi.org/10.1016/j.est.2015.12.009.
33 33. Apaydın‐Varol, E. and Pütün, A.E. (2012). Preparation and characterization of pyrolytic chars from different biomass samples. Journal of Analytical and Applied Pyrolysis 98: 29–36. https://doi.org/10.1016/j.jaap.2012.07.001.
34 34. Lee, Y., Park, J., Ryu, C. et al. (2013). Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500°C. Bioresource Technology 148: 196–201. https://doi.org/10.1016/j.biortech.2013.08.135.
35 35. González, J.F., Román, S., Encinar, J.M. et al. (2009). Pyrolysis of various biomass residues and char utilization for the production of activated carbons. Journal of Analytical and Applied Pyrolysis 85 (1): 134–141. https://doi.org/10.1016/j.jaap.2008.11.035.
36 36. Rezma, S., Birot, M., Hafiane, A. et al. (2017). Physically activated microporous carbon from a new biomass source: date palm petioles. Comptes Rendus Chimie 20 (9): 881–887. https://doi.org/10.1016/j.crci.2017.05.003.
37 37. Al‐Wabel, M.I., Rafique, M.I., Ahmad, M. et al. (2019). Pyrolytic and hydrothermal carbonization of date palm leaflets: characteristics and ecotoxicological effects on seed germination of lettuce. Saudi Journal of Biological Sciences 26 (4): 665–672. https://doi.org/10.1016/j.sjbs.2018.05.017.
38 38. Cai, J., Li, B., Chen, C. et al. (2016). Hydrothermal carbonization of tobacco stalk for fuel application. Bioresource Technology 220: 305–311. https://doi.org/10.1016/j.biortech.2016.08.098.
39 39. Tobi, A.R., Dennis, J.O., Zaid, H.M. et al. (2019). Comparative analysis of physiochemical properties of physically activated carbon from palm bio‐waste. Journal of Materials Research and Technology 8 (5): 3688–3695. https://doi.org/10.1016/j.jmrt.2019.06.015.
40 40. Chaiya, C. and Reubroycharoen, P. (2013). Production of bio oil from para rubber seed using pyrolysis process. Energy Procedia 34: 905–911. https://doi.org/10.1016/j.egypro.2013.06.828.
41 41. Fu, P., Hu, S., Xiang, J. et al. (2012). Evaluation of the porous structure development of chars from pyrolysis of rice straw: effects of pyrolysis temperature and heating rate. Journal of Analytical and Applied Pyrolysis 98: 177–183. https://doi.org/10.1016/j.jaap.2012.08.005.
42 42. Xu, Q., Tang, S., Wang, J. et al. (2018). Pyrolysis kinetics of sewage sludge and its biochar characteristics. Process Safety and Environmental Protection 115: 49–56. https://doi.org/10.1016/j.psep.2017.10.014.
43 43. Zhang, J., Gao, J., Chen, Y. et al. (2017). Characterization, preparation, and reaction mechanism of hemp stem based activated carbon. Results in Physics 7: 1628–1633. https://doi.org/10.1016/j.rinp.2017.04.028.
44 44. David, E. and Kopac, J. (2014). Activated carbons derived from residual biomass pyrolysis and their CO2 adsorption capacity. Journal of Analytical and Applied Pyrolysis 110: 322–332. https://doi.org/10.1016/j.jaap.2014.09.021.
45 45. Kumar, A. and Jena, H.M. (2016). Preparation and characterization of high surface area activated carbon from Fox nut (Euryale ferox) shell by chemical activation with H3PO4. Results in Physics 6: 651–658. https://doi.org/10.1016/j.rinp.2016.09.012.
46 46. Mistar, E.M., Alfatah, T., and Supardan, M.D. (2020). Synthesis and characterization of activated carbon from Bambusa vulgaris striata using two‐step KOH activation. Journal of Materials Research and Technology 9 (3): 6278–6286. https://doi.org/10.1016/j.jmrt.2020.03.041.
47 47. Liu, Z., Zhu, Z., Dai, J. et al. (2018). Waste biomass based‐activated carbons derived from soybean pods as electrode materials for high‐performance supercapacitors. ChemistrySelect 3 (21): 5726–5732. https://doi.org/10.1002/slct.201800609.
48 48. Kılıç, M., Apaydın‐Varol, E., and Pütün, A.E. (2012). Preparation and surface characterization of activated carbons from Euphorbia rigida by chemical activation with ZnCl2, K2CO3, NaOH and H3PO4. Applied Surface Science 261: 247–254. https://doi.org/10.1016/j.apsusc.2012.07.155.
49 49. Ncibi, M.C., Ranguin, R., Pintor, M.J. et al. (2014). Preparation and characterization of chemically activated carbons derived from Mediterranean Posidonia oceanica (L.) fibres. Journal of Analytical and Applied Pyrolysis 109: 205–214. https://doi.org/10.1016/j.jaap.2014.06.010.
50 50. Ponomarev, N. and Sillanpää, M. (2019). Combined chemical‐templated activation of hydrolytic lignin for producing porous carbon. Industrial Crops and Products 135: 30–38. https://doi.org/10.1016/j.indcrop.2019.03.050.
51 51. Hayashi, J., Kazehaya, A., Muroyama, K. et al. (2000). Preparation of activated carbon from lignin by chemical activation. Carbon 38 (13): 1873–1878. https://doi.org/10.1016/S0008‐6223(00)00027‐0.
52 52. Lillo‐Ródenas, M.A., Cazorla‐Amorós, D., and Linares‐Solano, A. (2003). Understanding chemical reactions between carbons and NaOH and KOH: an insight into the chemical activation mechanism. Carbon 41 (2): 267–275. https://doi.org/10.1016/S0008‐6223(02)00279‐8.
53 53. Foo, K.Y. and Hameed, B.H. (2012). Textural porosity, surface chemistry and adsorptive properties of durian shell derived activated carbon prepared by microwave assisted NaOH activation. Chemical Engineering Journal 187: 53–62. https://doi.org/10.1016/j.cej.2012.01.079.
54 54. Pütün, A.E., Gerçel, H.F., Koçkar, Ö.M. et al. (1996). Oil production from an arid‐land plant: fixed‐bed pyrolysis and hydropyrolysis of Euphorbia rigida. Fuel 75 (11): 1307–1312. https://doi.org/10.1016/0016‐2361(96)00098‐1.
Читать дальшеИнтервал:
Закладка:
Похожие книги на «High-Performance Materials from Bio-based Feedstocks»
Представляем Вашему вниманию похожие книги на «High-Performance Materials from Bio-based Feedstocks» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.
Обсуждение, отзывы о книге «High-Performance Materials from Bio-based Feedstocks» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.