Nitric Oxide in Plants

Здесь есть возможность читать онлайн «Nitric Oxide in Plants» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Nitric Oxide in Plants: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Nitric Oxide in Plants»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

ORGANIC REACTIONS
Examines the beneficial roles of nitric oxide in growth and stress tolerance regulation through its involvement in tolerance mechanisms Nitric Oxide in Plants: A Molecule with Dual Roles
Nitric Oxide in Plants: A Molecule with Dual Roles

Nitric Oxide in Plants — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Nitric Oxide in Plants», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

References

1 Able, A.J. (2003). Role of reactive oxygen species in the response of barley to necrotrophic pathogens. Protoplasma 221: 137–143.

2 Ahmad, P., Abdel Latef, A.A., Hashem, A. et al. (2016). Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea. Frontiers in Plant Science 7: 1–11. doi: 10.3389/fpls.2016.00347.

3 Ahmad, P., Ahanger, M.A., Alyemeni, M.N. et al. (2018). Exogenous application of nitric oxide modulates osmolyte metabolism, antioxidants, enzymes of ascorbate-glutathione cycle and promotes growth under cadmium stress in tomato. Protoplasma 255 (1): 79–93.

4 Alamillo, J.M. and Garcia-Olmedo, F. (2001). Effects of urate, a natural inhibitor of peroxynitrite mediated toxicity, in the response of Arabidopsis thaliana to the bacterial pathogen Pseudomonas syringae. The Plant Journal 25: 529–540.

5 Albertos, P., Romero-Puertas, M.C., Tatematsu, K. et al. (2015). S-nitrosylation triggers ABI5 degradation to promote seed germination and seedling growth. Nature Communications 6: 8669.

6 Amooaghaie, R. and Nikzad, K. (2013). The role of nitric oxide in priming-induced low-temperature tolerance in two genotypes of tomato. Seed Science Research 23: b1–b4. doi: 10.1017/S0960258513000068.

7 Aroca, Á., Serna, A., Gotor, C. et al. (2015). S-sulfhydration: a new post-translational modification in plant systems. Plant Physiology 168: 334–342.

8 Arora, D. and Bhatla, S.C. (2017). Melatonin and nitric oxide regulate sunflower seedling growth under salt stress accompanying differential expression of Cu/Zn SOD and Mn SOD. Free Radical Biology and Medicine 106: 315–328. doi: 10.1016/j.freeradbiomed.2017.02.042.

9 Arteel, G.E., Briviba, K., and Sies, H. (1999). Protection against peroxynitrite. FEBS Letters 445: 226–230.

10 Asgher, M., Per, T.S., Masood, A. et al. (2017). Nitric oxide signaling and its crosstalk with other plant growth regulators in plant responses to abiotic stress. Environmental Science and Pollution Research 24: 2273–2285. doi: 10.1007/s11356-016-7947-8.

11 Babaei, S., Niknam, V., and Behmanesh, M. (2020). Comparative effects of nitric oxide and salicylic acid on salinity tolerance in saffron (Crocus sativus). Plant Biosystems 155: 73–82. doi: 10.1080/11263504.2020.1727975.

12 Barakat, A., Staton, M., Cheng, C.-H. et al. (2012). Chestnut resistance to the blight disease: insights from transcriptome analysis. BMC Plant Biology 12: 38. doi: 10.1186/1471-2229-12-38.

13 Batista, P.F., Costa, A.C., Müller, C. et al. (2018). Nitric oxide mitigates the effect of water deficit in Crambe abyssinica. Plant Physiology and Biochemistry. doi: 10.1016/j.plaphy.2018.06.012.

14 Belenghi, B., Romero-Puertas, M.C., Vercammen, D. et al. (2007). Metacaspase activity of Arabidopsis thaliana is regulated by S-nitrosylation of critical cysteine residue. Journal of Biological Chemistry 282: 1352–1358.

15 Bennett, M., Mehta, M., and Grant, M. (2005). Biophoton imaging: a non-destructive method for assaying R gene responses. Molecular Plant–Microbe Interactions 82: 95–102.

16 Bethke, P.C., Libourel, I.G., and Jones, R.L. (2007). Nitric oxide in seed dormancy and germination. In: Annual Plant Reviews Vol. 27: Seed Development, Dormancy and Germination (eds. K.J. Bradford and H. Nonogaki), 153–175. Oxford, UK: Blackwell Publishing Ltd.

17 Bhuyan, M.H.M.B., Hasanuzzaman, M., Parvin, K. et al. (2020). Nitric oxide and hydrogen sulfide: two intimate collaborators regulating plant defense against abiotic stress. Plant Growth Regulation 90: 409–424. doi: 10.1007/s10725-020-00594-4.

18 Bouchereau, A., Aziz, A., Larher, F. et al. (1999). Polyamines and environmental challenges: recent developments. Plant Science 140: 103–125.

19 Bozhkov, P.V., Suarez, M.F., Filonova, L.H. et al. (2005). Cysteine protease mcll-Pa executes programmed cell death during plant embryogenesis. Proceedings of the National Academy of Sciences of the United States of America 102: 14463–14468.

20 Cao, N., Zhan, B., and Zhou, X. (2019). Nitric oxide as a downstream signaling molecule in brassinosteroid-mediated virus susceptibility to maize chlorotic mottle virus in maize. Viruses 11: 368. doi: 10.3390/v11040368.

21 Castillo, M.C., Lozano-Juste, J., Gonzalez-Guzman, M. et al. (2015). Inactivation of PYR/PYL/RCAR ABA receptors by tyrosine nitration may enable rapid inhibition of ABA signaling by nitric oxide in plants. Science Signaling 8: ra89.

22 Chakraborty, N. and Acharya, K. (2017). “NO way”! Says the plant to abiotic stress. Plant Gene 11: 99–105.

23 Chen, Z.H., Wang, Y., Wang, J.W. et al. (2016). Nitrate reductase mutation alters potassium nutrition as well as nitric oxide-mediated control of guard cell ion channels in Arabidopsis. New Phytologist 209: 1456–1469. doi: 10.1111/nph.13714.

24 Clarke, A., Desikan, R., Hurst, R.D., Hancock, J.T. et al. (2000). NO way back: nitric oxide and programmed cell death in Arabidopsis thaliana suspension cultures. Plant Journal 24: 667–677.

25 Corpas, F. and Palma, J. (2018). Assessing nitric oxide (NO) in higher plants: an outline. Nitrogen 1: 3. doi: 10.3390/nitrogen1010003.

26 Corpas, F.J., Barroso, J.B., Carreras, A. et al. (2006). Constitutive arginine-dependent nitric oxide synthase activity in different organs of pea seedlings during plant development. Planta 224: 246–254.

27 Corpas, F.J., González-Gordo, S., Cañas, A. et al. (2019). Nitric oxide and hydrogen sulfide in plants: which comes first? Journal of Experimental Botany 70: 4391–4404.

28 Dadasoglu, E., Ekinci, M., Kul, R. et al. (2020). Nitric oxide enhances salt tolerance through regulating antioxidant enzyme activity and nutrient uptake in pea. Legume Research 44: 41–45. doi: 10.18805/LR-540.

29 Delledonne, M. (2005). NO news is good news for plants. Current Opinion in Plant Biology 8: 390–396.

30 Delledonne, M., Xia, Y.J., Dixon, R.A. et al. (1998). Nitric oxide functions as a signal in plant disease resistance. Nature 394: 585–588.

31 Delledonne, M., Zeier, J., Marocco, A. et al. (2001). Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proceedings of the National Academy of Sciences of the United States of America 98: 13454–13459.

32 Del Pozo, O. and Lam, E. (2003). Expression of the baculovirus p35 protein in tobacco inhibits hypersensitive response cell death and compromises N gene-mediated disease resistance in response to tobacco mosaic virus. Molecular Plant–Microbe Interactions 16: 485–494.

33 del Río, L.A., Corpas, F.J., and Barroso, J.B. (2004). Nitric oxide and nitric oxide synthase activity in plants. Phytochemistry 65: 783–792.

34 Deng, X.G., Zhu, T., Zou, L.J. et al. (2016). Orchestration of hydrogen peroxide and nitric oxide in brassinosteroid-mediated systemic virus resistance in Nicotiana benthamiana. The Plant Journal 85: 478–493.

35 Desikan, R., Griffiths, R., Hancock, J. et al. (2002). A new role for an old enzyme: nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America 99: 16314–16318.

36 de Pinto, M.C., Tomassi, F., and de Gara, L. (2002). Changes in the antioxidant systems as a part of the signaling pathway responsible for the programmed cell death activated by nitric oxide and reactive oxygen species in tobacco bright-yellow 2 cells. Plant Physiology 130: 689–708.

37 Diaz, M., Achkor, H., Titarenko, E. et al. (2003). The gene encoding glutathione-dependent formaldehyde dehydrogenase/GSNO reductase is responsive to wounding, jasmonic acid and salicylic acid. FEBS Letters 543: 136–139.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Nitric Oxide in Plants»

Представляем Вашему вниманию похожие книги на «Nitric Oxide in Plants» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Nitric Oxide in Plants»

Обсуждение, отзывы о книге «Nitric Oxide in Plants» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x