13. Li, M.H., Shen, P.S., Wang, K.C., Guo, T.F., Chen, P., Inorganic p-type contact materials for perovskite-based solar cells. J. Mater. Chem. A , 3, 17, 9318– 9319, 2015.
14. Dymshits, A., Henning, A., Segev, G., Rosenwaks, Y., Etgar, L., The electronic structure of metal oxide/organo metal halide perovskite junctions in perovskite based solar cells. Sci. Rep. , 5, 1, 1–6, 2015.
15. Zhao, Y., Nardes, A.M., Zhu, K., Mesoporous perovskite solar cells: Material composition, charge-carrier dynamics, and device characteristics. Faraday Discuss. , 176, 301–312, 2014.
16. Bi, D. et al. , Facile synthesized organic hole transporting material for perovskite solar cell with efficiency of 19.8%. Nano Energy , 23, 138–144, 2016.
17. Jung, H.S. and Park, N.-G., Solar Cells: Perovskite Solar Cells: From Materials to Devices (Small 1/2015). Small , 11, 1, 2–2, 2015.
18. Carnie, M.J. et al. , A one-step low temperature processing route for organolead halide perovskite solar cells. Chem. Commun. , 49, 72, 7893–7895, 2013.
19. Zhang, Q., Dandeneau, C.S., Zhou, X., Cao, C., ZnO nanostructures for dye-sensitized solar cells. Adv. Mater. , 21, 41, 4087–4108, 2009.
20. Marchioro, A. et al. , Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells. Nat. Photonics , 8, 250, 2014.
21. Oh, L.S. et al. , Zn2SnO4-based photoelectrodes for organolead halide perovskite solar cells. J. Phys. Chem. C , 118, 40, 22991–22994, 2014.
22. Zhu, L. et al. , Mesoporous BaSnO3 layer based perovskite solar cells. Chem. Commun. , 52, 5, 970–973, 2016.
23. Bera, A. et al. , Perovskite oxide SrTiO3 as an efficient electron transporter for hybrid perovskite solar cells. J. Phys. Chem. C , 118, 49, 28494–28501, 2014.
24. Krishnamoorthy, T. et al. , A swivel-cruciform thiophene based hole-transporting material for efficient perovskite solar cells. J. Mater. Chem. A , 2, 18, 6305–6309, 2014.
25. Kim, M.C. et al. , Electro-spray deposition of a mesoporous TiO2 charge collection layer: Toward large scale and continuous production of high efficiency perovskite solar cells. Nanoscale , 7, 48, 20725–20733, 2015.
26. Eperon, G.E. et al. , Formamidinium lead trihalide: A broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. , 7, 3, 982, 2014.
27. Liu, M., Johnston, M.B., Snaith, H.J., Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature , 501, 7467, 395–398, 2013.
28. Kim, H.S. et al. , Control of I-V Hysteresis in CH3NH3PbI3 Perovskite Solar Cell. J. Phys. Chem. Lett. , 6, 22, 4633–4639, 2015.
29. Chen, B., Yang, M., Priya, S., Zhu, K., Origin of J-V Hysteresis in Perovskite Solar Cells. J. Phys. Chem. Lett. , 7, 5, 905–917, 2016.
30. Zhao, L. et al. , High-Performance Inverted Planar Heterojunction Perovskite Solar Cells Based on Lead Acetate Precursor with Efficiency Exceeding 18%. Adv. Funct. Mater. , 26, 20, 3508–3514, 2016.
31. Sun, S. et al. , The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energy Environ. Sci. , 7, 1, 399–407, 2014.
32. Mutalikdesai, A. and Ramasesha, S.K., Emerging solar technologies: Perovskite solar cell. Resonance , 22, 11, 1061–1083, 2017.
33. Yin, W. et al. , Halide Perovskite Materials for Solar Cells: A Theoretical Review Received. J. Mater. Chem. A , 2, 1, 1–7, 2014.
34. Queisser, H.J., Slip patterns on boron-doped silicon surfaces. J. Appl. Phys. , 32, 3, 510–519, 1961.
35. Green, M.A., Emery, K., Hishikawa, Y., Warta, W., Dunlop, E.D., Solar cell efficiency tables (version 46). Prog. Photovolt. Res. Appl. , 29, 1, 3–15, 2015.
36. Nayak, P.K., Garcia-Belmonte, G., Kahn, A., Bisquert, J., Cahen, D., Photovoltaic efficiency limits and material disorder. Energy Environ. Sci. , 5, 3, 6022–6039, 2012.
37. Stranks, S.D. et al. , Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science , 342, 341–344, 80, 2013.
38. Wang, B., Xiao, X., Chen, T., Perovskite photovoltaics: A high-efficiency newcomer to the solar cell family. Nanoscale , 6, 21, 12287–12297, 2014.
39. Pang, S. et al. , NH2CH=NH2PbI3: An alternative organolead iodide perovskite sensitizer for mesoscopic solar cells. Chem. Mater. , 26, 3, 1485–1491, 2014.
40. Stoumpos, C.C., Malliakas, C.D., Kanatzidis, M.G., Semiconducting tin and lead iodide perovskites with organic cations: Phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. , 52, 9019– 9038, 2013.
41. Ogomi, Y. et al. , CH3NH3SnxPb(1-x)I3 perovskite solar cells covering up to 1060 nm. J. Phys. Chem. Lett. , 5, 6, 1004–1011, 2014.
42. Hao, F., Stoumpos, C.C., Chang, R.P.H., Kanatzidis, M.G., Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. J. Am. Chem. Soc , 5, 6, 1004–1011, 2014.
43. Green, M.A. et al. , Solar cell efficiency tables (version 51). Prog. Photovolt. Res. Appl. , 26, 3–12, 2018.
44. Sha, W.E., II, Ren, X., Chen, L., Choy, W.C.H., The efficiency limit of methylammonium lead iodide perovskite solar cells. Appl. Phys. Lett. , 106, 22, 221104, 2015.
45. Noel, N.K. et al. , Lead-Free Organic-inorganic Tin Halide Perovskites for Photovoltaic Applications. Energy Environ. Sci. , 7, 9, 3061–3068, 2014.
46. Hao, F., Stoumpos, C.C., Cao, D.H., Chang, R.P.H., Kanatzidis, M.G., Lead-free solid-state organic–inorganic halide perovskite solar cells. Nat. Photonics , 8, 6, 489–494, 2014.
47. Mitzi, D.B., Chondroudis, K., Kagan, C.R., Organic-inorganic electronics. IBM J. Res. Dev. , 45, 1, 29–45, 2001.
48. Liu, J. et al. , A dopant-free hole-transporting material for efficient and stable perovskite solar cells † Broader context Energy & Environmental Science COMMUNICATION. Energy Environ. Sci. , 7, 9, 2963–2967, 2014.
49. Mei, A. et al. , A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science , 80, 345, 6194, 295–298, 2014.
50. Dualeh, A. et al. , Effect of annealing temperature on film morphology of organic-inorganic hybrid pervoskite solid-state solar cells. Adv. Funct. Mater. , 4, 17, 2880–2884, 2014.
51. Pathak, S.K. et al. , Performance and Stability Enhancement of Dye-Sensitized and Perovskite Solar Cells by Al Doping of TiO2. Adv. Funct. Mater. , 24, 38, 6046–6055, 2014.
52. Asghar, M., II, Zhang, J., Wang, H., Lund, P.D., Device stability of perovskite solar cells – A review. Renew. Sust. Energ. Rev. , 77, 131–146, 2017.
53. Liu, P., Wang, W., Liu, S., Yang, H., Shao, Z., Fundamental Understanding of Photocurrent Hysteresis in Perovskite Solar Cells. Adv. Energy Mater. , 9, 13, 1803017, 2019.
1 * Corresponding author: neha.patni@nirmauni.ac.in
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Читать дальше