Kirk N. Gelatt - Essentials of Veterinary Ophthalmology

Здесь есть возможность читать онлайн «Kirk N. Gelatt - Essentials of Veterinary Ophthalmology» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Essentials of Veterinary Ophthalmology: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Essentials of Veterinary Ophthalmology»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

A user-friendly reference to basic, foundational information on veterinary ophthalmology This book provides readers with a user-friendly manual to the basics of veterinary ophthalmology. It puts a focus on the most relevant information for clinical practice. Emphasizing canine ophthalmology, the book also covers the foundations of feline, equine, farm animal, and exotic animal ophthalmology. To aid in reader comprehension and information assimilation, a companion website presents review questions and the figures from the book in PowerPoint. Sample topics covered within the work include:
Ophthalmic foundations: ophthalmic development and structure, physiology of the eye and vision, and ocular pharmacology and therapeutics Canine ophthalmology: canine orbit (disease and surgery), canine eyelids (disease and surgery), canine lacrimal apparatus (tear secretion and drainage), canine cornea (diseases and surgery) and canine glaucoma Other species: feline ophthalmology, equine ophthalmology, and food and fiber animal ophthalmology Ophthalmic and systemic diseases: comparative neuro-ophthalmology and systemic disease and the eye
is a useful guide for veterinary students and practitioners looking to build out their core foundations of knowledge within their specific programs of study and disciplines.

Essentials of Veterinary Ophthalmology — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Essentials of Veterinary Ophthalmology», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Table 210 IOPs in select animal species IOP results Species Mean SD - фото 69

Table 2.10 IOPs in select animal species.

IOP results
Species Mean ± SD Tonometer Investigator
Alligator 23.7 ± 2.1 TonoPen Whittaker et al. (1995)
Cat 22.6 ± 4.0 Mackay‐Marg Miller et al. (1991b)
19.7 ± 5.6 TonoPen
Cow 28.2 ± 4.6 Mackay‐Marg Gum (1990)
26.9 ± 6.7 TonoPen XL
Chinchilla 3.0 ± 1.8 TonoVet‐D Müller et al. (2010)
9.7 ± 2.5 TonoVet‐D Snyder et al. (2018)
Dog 15.7 ± 4.2 Mackay‐Marg Miller et al. (1991a)
16.7 ± 4.0 TonoPen
17.8 ± 0.9 (pm) Mackay‐Marg Gelatt et al. (1981)
21.5 ± 0.8 (am)
Ferret 22.8 ± 5.5 TonoPen Sapienza et al. (1991)
15.4 ± 1.1 TonoPen Vet Di Girolamo et al. (2013)
14.1 ± 0.4 TonoVet
Frog (White's tree frogs) 16.8 ± 3.9 TonoLab‐R Hausmann et al. (2017)
14.7 ± 1.6 TonoVet‐D
Goat (pygmy) 11.8 ± 1.5 TonoVet‐D Broadwater et al. (2007)
10.8 ± 1.7 TonoPen XL
Guinea pig 18.3 ± 4.6 TonoPen Vet Coster et al. (2008)
6.1 ± 2.2 TonoVet
Horse 25.5 ± 4.0 Mackay‐Marg Cohen & Reinke (1970)
23.5 ± 6.1 Mackay‐Marg Miller et al. (1990)
23.3 ± 6.9 TonoPen
Mouse (no anesthetic) 14.6 ± 0.5 TonoLab Ding et al. (2011)
Nonhuman primate Rhesus (ketamine) 14.9 ± 2.1 Pneumatonograph Bito et al. (1979)
15.4 ± 2.6 TonoPen XL Komaromy et al. (1998)
Tibetan monkey 29.3 ± 0.9 TonoVet‐P Liu et al. (2011)
Rabbit 19.5 ± 1.8 Pneumatonograph Vareilles et al. (1977a, 1977b)
17.9 ± 2.1 Smith & Gregory (1989)
9.5 ± 2.6 TonoVet Pereira et al. (2011)
15.4 ± 2.2 TonoPen Avia
Raptor
Red‐tailed hawk 20.6 ± 3.4 TonoPen Stiles et al. (1994)
Golden eagle 21.5 ± 3.0
Great horned owl 10.8 ± 3.6
White‐tailed sea eagle 26.9 ± 5.8 TonoVet Reuter et al. (2011)
Northern goshawk 18.3 ± 3.8
Red kite 13.0 ± 5.5
Eurasian sparrowhawk 15.5 ± 2.5
Buzzard, common 26.9 ± 7.0
Kestrel, common 9.8 ± 2.5
Falcon, peregrine 12.7 ± 5.8
Owl, tawny 9.4 ± 4.1
Owl, long‐eared 7.8 ± 3.2
Owl, barn 10.8 ± 3.8
Rat 17.3 ± 5.3 TonoPen Mermoud et al. (1994)
21.4 ± 1.0 TonoPen Sappington et al. (2010)
Sheep 10.6 ± 1.4 Perkins Gerometta et al. (2009)

Table 2.11 Factors that cause short‐ and long‐term fluctuations in IOP.

Short‐term fluctuations Long‐term fluctuations
Diurnal changes Aging
Forced eyelid closure Race/breed
Contraction of retractor bulbi muscles Hormones
Coughing/Valsalva maneuver Glucocorticoids
Abrupt changes in blood pressure Growth hormone
Pulse Estrogen
Struggling/electroshock Progesterone
Changes in body/head position Obesity
Succinylcholine Myopia
Acidosis Gender
Season

Ocular rigidity is a constant characteristic of each eye, but it also depends on IOP. Hence, the distensibility of each globe varies among individuals as well as with the IOP. Dogs and cats have greater scleral elasticity than humans, so less resistance is offered with indentation tonometry, and buphthalmia occurs more readily with prolonged, increased IOP.

Intraocular Pressure

In many species, IOPs as measured with applanation tonometry in normal animals have been reported ( Table 2.10). In humans and animals, short‐ and long‐term fluctuations in IOP occur for a variety of reasons ( Table 2.11). Diurnal IOP variations generally occur in most species; in humans and dogs, the highest pressure occurs in the morning and the lowest in the afternoon. In contrast, the greatest IOPs occur during the day and the lowest IOPs are documented at night in the rabbit, cat, horse, and nonhuman primate. In glaucomatous canine patients, diurnal IOP fluctuations (as measured by tonometry) are typically much greater in comparison to normal dogs. Consequently, antiglaucoma medications administered once daily to dogs should be given in the evening to mitigate IOP spikes in the morning, when pressures are typically the greatest.

Lens

The second most powerful refracting structure in the eye is the lens. Like the cornea, the lens is a transparent tissue without a direct blood supply. The lens depends primarily on AH for its metabolic needs. Most of the lens proteins are soluble, with a small amount of glycoproteins, whereas the cornea consists mostly of insoluble collagen and a relatively large amount of glycoproteins. The lens considerations are important to the veterinary ophthalmologists when considering cataract surgery in animals, and attempts using intraocular lenses (IOLs) to re‐establish the best possible visual acuity. Lens metabolism is also important as the second largest group of dogs having cataract surgery are those with diabetes mellitus.

Lens epithelial cells are the progenitors of the lens fibers and transition into lens fiber cells of the cortex at the equator. This process is characterized by distinct biochemical and morphological changes, such as the synthesis of crystallin proteins, cell elongation, loss of cellular organelles, and disintegration of the nucleus.

Transparency of the lens depends primarily on the highly ordered lens cell arrangement, as well as on the solubility and physical arrangements of its proteins. The lens behaves as a cell syncytium both biochemically and electrically. The lens consists of approximately 68% water, 38% protein, and small amounts of lipids, inorganic ions, carbohydrates, ascorbic acid, glutathione, and amino acids.

The protein content of the lens is very high in comparison to other body organs. Protein synthesis ceases with formation of the lens fiber cells, and all the protein changes that occur after this stage are posttranslational modifications. Lens proteins are divided into water‐soluble proteins and water‐insoluble proteins. Crystallins comprise 80–90% of the water‐soluble lens proteins. Most of the insoluble proteins occur in the lens nucleus, whereas the soluble proteins are concentrated in the lens cortex. The insoluble proteins are associated primarily with membranes of the lens fibers; the soluble proteins comprise the bulk of the refractive fibers of the lens. With aging, water‐soluble proteins coalesce to make high molecular weight aggregates and their hydrophilicity diminishes. Additionally, when the lens becomes cataractous, the level of water‐insoluble proteins increases.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Essentials of Veterinary Ophthalmology»

Представляем Вашему вниманию похожие книги на «Essentials of Veterinary Ophthalmology» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Essentials of Veterinary Ophthalmology»

Обсуждение, отзывы о книге «Essentials of Veterinary Ophthalmology» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x