Марио Ливио - Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса

Здесь есть возможность читать онлайн «Марио Ливио - Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: М., Год выпуска: 2016, ISBN: 2016, Издательство: Литагент АСТ, Жанр: foreign_edu, Математика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Альберт Эйнштейн писал: «Как так получилось, что математика, продукт человеческой мысли, независимый от опыта, так прекрасно соотносится с объектами физической реальности?» Наука предлагает абстрактную математическую модель, а спустя какое-то время (иногда десятилетия) выясняется, что эта модель существует в реальности! Так кто же придумал математику – мы сами или Вселенная? Может быть, математика – язык, на котором говорит с нами мироздание?
Блестящий физик и остроумный писатель Марио Ливио рассказывает о математических идеях от Пифагора до наших дней и показывает, как абстрактные формулы и умозаключения помогли нам описать Вселенную и ее законы.
Книга адресована всем любознательным читателям независимо от возраста и образования.

Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Как я уже отметил, Фреге был убежден, что любое утверждение, имеющее отношение к натуральным числам, можно познать и вывести исключительно на основе логических определений и законов. Подобным же образом он начал свое описание темы натуральных чисел, не требуя никакого априорного понимания идеи «числа». Например, на логическом языке Фреге два концепта равномощны (то есть с ними ассоциируется одно и то же число), если есть взаимно однозначное соответствие между объектами, «подпадающими под» один концепт, и объектами, «подпадающими под» другой. То есть крышки от мусорных баков равномощны самим мусорным бакам (если у каждого бака есть крышка), и это определение не требует никакого упоминания о числах. Затем Фреге предлагает интереснейшее логическое определение числа 0. Представьте себе концепт F , который по определению «не тождествен самому себе». Поскольку любой объект должен быть тождествен самому себе, то под концепт F не подпадают никакие объекты. Иначе говоря, F (x) – ложь для любого объекта x . Привычное всем нам число нуль Фреге определил как «мощность концепта F ». Затем он определил все натуральные числа в терминах сущностей, которые назвал объемами (Frege 1884). Объем концепта – это класс всех объектов, подпадающих под этот концепт. Человеку, далекому от логики как науки, переварить такое определение, пожалуй, сложновато, но на самом деле все очень просто. Например, объем концепта «женщина» – это класс всех женщин. Обратите внимание, что объем класса «женщина» сам по себе не женщина.

Вероятно, вам интересно, как это абстрактное логическое определение помогает определить, скажем, число 4. По Фреге, число 4 – это объем (или класс) всех концептов, под которые подпадают четыре объекта. Так что к этому классу, а следовательно, к числу 4, принадлежит и концепт «быть лапкой песика по имени Снупи», и концепт «прабабушка Готлоба Фреге».

Программа Фреге произвела настоящую сенсацию, однако были у нее и серьезные недостатки. С одной стороны, идея применять концепты – самую суть мышления – к построению арифметики была просто гениальной. С другой – Фреге не разглядел в собственной системе понятий весьма существенные противоречия. В частности, доказано, что одна из его аксиом, так называемый «Основной закон V », ведет к противоречию и поэтому безнадежно ошибочна. Сам по себе закон довольно невинен: он гласит, что объем концепта F идентичен объему концепта G тогда и только тогда, когда под концепты F и G подпадают одни и те же объекты. Однако 16 июня 1902 года разорвалась бомба: Бертран Рассел (рис. 49) написал Фреге письмо, где привел некий парадокс, доказывавший, что Основной закон V приводит к противоречию. Судьба распорядилась так, что письмо Рассела пришло как раз тогда, когда второй том «Основных законов арифметики» готовился к печати. Потрясенный Фреге поспешил сделать к рукописи откровенное примечание: «Едва ли для ученого что-то может быть неприятнее, чем обнаружить, что самые основы его рассуждений рухнули, когда работа уже завершена. Именно в такое положение поставило меня письмо мистера Бертрана Рассела, когда книга была уже практически в печати». Самому же Расселу Фреге, как человек благородный, написал: «Открытое Вами противоречие стало для меня величайшей неожиданностью – и вынужден признаться, что я даже испугался, поскольку оно сотрясло самые основы, на которых я намеревался выстроить арифметику».

Как странно, однако, что один-единственный парадокс оказал такое разрушительное воздействие на целую программу, целью которой было заложить основы математики, но, как отметил Уиллард Ван Орман Куайн, «Не раз и не два в истории случалось так, что открытие парадокса становилось поводом для основательной реконструкции самого фундамента мысли». Именно такой повод и предоставил парадокс Рассела.

Рис 49 Парадокс Рассела Теорию множеств создал практически в одиночку - фото 55

Рис. 49

Парадокс Рассела

Теорию множеств создал практически в одиночку немецкий математик Георг Кантор. Вскоре стало понятно, что множества играют в математике настолько фундаментальную роль и настолько тесно переплетены с логикой, что любые попытки выстроить математику на основе логики с необходимостью предполагали, что ее будут строить на аксиоматической основе теории множеств.

Рис 50 Класс или множество это просто набор объектов Объекты не обязательно - фото 56

Рис. 50

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса»

Представляем Вашему вниманию похожие книги на «Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса»

Обсуждение, отзывы о книге «Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x