Марио Ливио - Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса

Здесь есть возможность читать онлайн «Марио Ливио - Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: М., Год выпуска: 2016, ISBN: 2016, Издательство: Литагент АСТ, Жанр: foreign_edu, Математика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Альберт Эйнштейн писал: «Как так получилось, что математика, продукт человеческой мысли, независимый от опыта, так прекрасно соотносится с объектами физической реальности?» Наука предлагает абстрактную математическую модель, а спустя какое-то время (иногда десятилетия) выясняется, что эта модель существует в реальности! Так кто же придумал математику – мы сами или Вселенная? Может быть, математика – язык, на котором говорит с нами мироздание?
Блестящий физик и остроумный писатель Марио Ливио рассказывает о математических идеях от Пифагора до наших дней и показывает, как абстрактные формулы и умозаключения помогли нам описать Вселенную и ее законы.
Книга адресована всем любознательным читателям независимо от возраста и образования.

Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Жан-Пьер Шанже в увлекательном диалоге о природе математики с математиком (платоновского толка) Аланом Конном (Changeux and Connes 1995) приводит следующее утверждение.

Причина, по которой математические объекты не имеют ничего общего с вещественным миром… в их генеративном характере, в способности порождать другие объекты. Здесь следует подчеркнуть, что в мозге существует своего рода «вместилище сознания», некое физическое пространство, предназначенное для моделирования и создания новых объектов… в некотором отношении эти новые математические объекты – как живые существа: подобно живым существам, они подобны физическим объектам, способным очень быстро эволюционировать; но в отличие от живых существ – за исключением вирусов – они эволюционируют в нашем мозге.

Наконец, самое категорическое суждение в споре «изобретение или открытие» сделали специалист по когнитивной лингвистике Джордж Лакофф и физиолог Рафаэль Нуньес в своей довольно спорной книге «Откуда взялась математика» (Lakoff and Núñez 2000). Как я уже отмечал в главе 1, они объявили следующее.

Математика – естественная составляющая человеческого бытия. Она возникает из нашего тела, нашего мозга, нашего повседневного опыта взаимодействия с миром [то есть Лакофф и Нуньес утверждают, что математика возникает из некоего «встроенного разума»] … Математика – это система человеческих понятий, которая находит невероятное применение обычным инструментам человеческого познания… Человеческие существа ответственны за создание математики – и мы продолжаем быть ответственными за ее разработку и расширение. У портрета математики человеческое лицо.

Ученые-когнитивисты основывают свои выводы на данных, накопленных в результате многочисленных экспериментов, и считают эти данные вполне убедительными. В ходе некоторых таких опытов изучалась функциональная визуализация мозговой деятельности во время решения математических задач. Иногда изучались математические познания младенцев или племен охотников-собирателей вроде мундуруку, не получавших никакого образования, а также людей с различными поражениями головного мозга. Большинство исследователей согласны, что некоторые математические способности, похоже, присущи нам от рождения. Например, все люди с первого взгляда различают группы из одного, двух и трех объектов (это называется субитизация ). Вероятно, от рождения мы обладаем и некоторыми очень ограниченными арифметическими способностями – умением группировать, распределять попарно и решать очень простые задачи на сложение и вычитание, как, вероятно, и элементарными геометрическими понятиями, хотя второе утверждение более спорно. Нейрофизиологи выявили также особые отделы мозга – к ним относится, в частности, ангулярная извилина в левом полушарии, – отвечающие, судя по всему, за манипуляции с числами и математические выкладки, но при этом не имеющие отношения ни к языку, ни к рабочей памяти (см., например, Ramachandran and Blakeslee 1999).

Согласно Лакоффу и Нуньесу, главный инструмент, позволяющий продвинуться дальше врожденных способностей, – это конструирование концептуальных метафор , мыслительный процесс, переводящий абстрактные понятия в более конкретные. Например, концепция арифметики коренится в одной из самых фундаментальных метафор собирания предметов. С другой стороны, относительно абстрактная булева алгебра классов метафорически связывает классы с числами. Сложный сценарий, разработанный Лакоффом и Нуньесом, предлагает интересную точку зрения на то, почему одни математические понятия людям усвоить проще других. Некоторые исследователи, например нейрофизиолог-когнитивист Розмари Варли из Шеффилдского университета, предполагают, что по крайней мере некоторые математические структуры паразитируют на языковых способностях – то есть математические понятия развиваются благодаря заимствованию ментальных инструментов, которые отвечают за создание языка (Varley et al. 2005; Klessinger et al. 2007).

Когнитивисты подвели весьма солидную базу под ассоциацию нашей математики с человеческим разумом и против платонизма. Но вот что интересно: самый сильный, по моему мнению, довод против платонизма выдвигают не нейробиологи, а сэр Майкл Атья, один из величайших математиков ХХ века. Я уже упоминал вскользь о его аргументации в главе 1, но здесь хотелось бы остановиться на ней поподробнее.

Если бы пришлось выбирать одно-единственное понятие из нашей математики, которое с наибольшей вероятностью существует независимо от человеческого разума, на чем бы вы остановились? Большинство из нас, скорее всего, пришло бы к выводу, что это должны быть натуральные числа. Что может быть естественнее, «натуральнее», чем 1, 2, 3, …? Даже немецкий математик Леопольд Кронекер (1823–1891), склонный к интуиционизму, как известно, провозгласил: «Господь сотворил натуральные числа, все остальное – дело рук человека». Поэтому, если удастся доказать, что даже натуральные числа как понятие берут начало в человеческом разуме, это будет серьезный довод в пользу парадигмы «изобретения». Вот как это формулирует Атья (Atiyah 1995): «Представим себе, что разумом наделено не человечество, а какая-нибудь огромная одинокая медуза в глубинах Тихого океана. Все ее сенсорные данные определялись бы движением, температурой и давлением. Поскольку все это – чистейший континуум, в такой обстановке не может появиться ничего дискретного, и медузе нечего было бы считать». Иначе говоря, Атья убежден, что даже такое фундаментальное понятие, как натуральные числа, и то было создано человеком посредством абстрагирования элементов физического мира (как сказали бы когнитивисты, «посредством закладывания метафор»). Иначе говоря, число 12, например, отражает абстракцию качества, общего для всего, что объединяется по дюжине, точно так же как слово «мысль» отражает самые разные процессы, происходящие у нас в мозге.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса»

Представляем Вашему вниманию похожие книги на «Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса»

Обсуждение, отзывы о книге «Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x