Прямо противоположную точку зрения отстаивают математики Эдвард Каснер (1878–1955) и Джеймс Ньюмен (1907–1966) в своей книге «Математика и воображение» (« Mathematics and the Imagination », Kasner and Newman 1989).
То, что математика занимает высокое положение, несравнимое с положением любой другой области целенаправленного мышления, неудивительно. Она обеспечила столько достижений естественных наук, она стала столь незаменимой в делах практических и столь легко превращается в шедевр чистой абстракции, что лишь естественно признать ее главенство среди прочих интеллектуальных достижений человека.
Несмотря на это главенство, предлог для первой значительной оценки математики представился лишь недавно – с появлением неевклидовой и четырехмерной геометрии. Мы вовсе не стремимся принизить достижения математического анализа, теории вероятности, арифметики бесконечных величин, топологии и прочих дисциплин, о которых мы говорили. Каждая из них расширила пределы математики и углубила как ее смысл, так и наше понимание физической Вселенной. Однако ни одна из них не способствовала математическому самоанализу, познанию того, как соотносятся разные части математики между собой и с математикой в целом более, чем неевклидова ересь.
Эта ересь была полна критического боевого духа, и благодаря этому мы преодолели представление о том, что математические истины будто бы существуют независимо, отдельно от нашего разума. Нам даже странно, что такое представление вообще бытовало. А все же именно так и думал Пифагор, а также Декарт и сотни прочих великих математиков до XIX века. Сегодня математика избавилась от оков, сбросила кандалы. Какова бы ни была ее сущность, мы понимаем, что она свободна, как разум, и ловка, как воображение. Неевклидова геометрия – это доказательство, что математика, в отличие от музыки сфер, творение самого человека и подчиняется лишь тем ограничениям, какие накладывают на нее законы мышления.
Математическим утверждениям как таковым присущи точность и окончательность – однако здесь картина совсем иная: перед нами разнообразие противоположных мнений, типичное скорее для философских диспутов или политических дебатов. Стоит ли нам удивляться? Вообще-то нет. Вопрос о том, изобретена математика или открыта, – отнюдь не вопрос самой математики.
Идея «открытия» предполагает какое-то прежнее существование в некой Вселенной, или реальной, или метафизической. Понятие «изобретения» задействует человеческий разум, либо индивидуальный, либо коллективный. Поэтому вопрос обращен к целой совокупности дисциплин, в которую входят и физика, и философия, и математика, и психология познания, и антропология – и он совершенно точно не ограничивается одной лишь математикой, по крайней мере, не прямо. А поэтому не исключено, что математика даже не обладает самым подходящим инструментарием для ответа на этот вопрос. Ведь, к примеру, поэты, способные творить словами настоящие чудеса, не обязательно лучшие лингвисты, а величайшие философы обычно не специалисты по нейрофизиологии. Поэтому ответ на вопрос «открыта или изобретена» можно получить (да и то не обязательно) лишь в результате дотошного исследования множества различных данных, полученных в самых разных сферах.
Метафизика, физика, психология познания
Те, кто считает, что математика существует во Вселенной, не зависимой от людей, также распадаются на два враждующих лагеря, поскольку по-разному понимают природу этой Вселенной [155] Один из лучших обзоров диспутов о природе математики можно найти в Barrow 1992. Несколько более научный, но все же доступный очерк основных идей дан в Kline 1972.
. Во-первых, есть «истинные» платоники, для которых математика существует в абстрактном вечном мире математических форм. Далее, есть и те, кто считает, что математические структуры – это на самом деле подлинная часть мира природы. Поскольку я уже довольно подробно писал о чистом платонизме и некоторых его философских недостатках, остановимся на второй точке зрения [156] Многие темы этой книги прекрасно раскрыты в Barrow 1992.
.
Пожалуй, крайнюю и самую спекулятивную версию «математики как части физического мира» поддерживает мой коллега-астрофизик Макс Тегмарк из Массачусетского технологического института.
Тегмарк полагает, что «наша Вселенная не просто описывается математикой, она и есть математика (курсив мой. – М. Л. )» (Tegmark 2007 a, b). Свою аргументацию он начинает с утверждения, что существует внешняя физическая реальность, которая не зависит от человека. С этим, пожалуй, не поспоришь. Далее он рассуждает о том, какой могла бы быть природа универсальной теории, описывающей подобную реальность (физики называют ее «теорией всего»). Поскольку физический мир никак не зависит от людей, полагает Тегмарк, его описание должно быть свободно от любой человеческой «нагрузки» (в особенности – от человеческого языка). То есть окончательная теория не может включать в себя понятий вроде «субатомных частиц», «вибрирующих струн», «искривлений пространства-времени» и прочих конструкций, созданных человеческим разумом. На основании этого соображения Тегмарк делает вывод, что единственно возможное описание космоса предполагает исключительно абстрактные понятия и соотношения между ними, а это, как он полагает, и есть рабочее определение математики.
Читать дальше
Конец ознакомительного отрывка
Купить книгу