Артур Бенджамин - Магия математики - Как найти x и зачем это нужно

Здесь есть возможность читать онлайн «Артур Бенджамин - Магия математики - Как найти x и зачем это нужно» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2016, ISBN: 2016, Издательство: Литагент Альпина, Жанр: foreign_edu, Математика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Магия математики: Как найти x и зачем это нужно: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Магия математики: Как найти x и зачем это нужно»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Почему нельзя было раньше узнавать о числах, алгебре и геометрии в такой увлекательной форме? Почему нельзя было сразу объяснить, зачем нам все эти параболы, интегралы и вероятности. Оказывается, математика окружает нас. Она повсюду! По параболе льется струя воды из фонтана, а инженеры используют свойства параболы, чтобы рассчитать траекторию полета самолетов и спутников. С помощью интегралов можно вычислить, сколько вам нужно линолеума, чтобы застелить помещение непрямоугольной формы. А умение вычислять вероятность события поможет выиграть в покер.
«Магия математики» – та книга, о которой вы мечтали в школе. Все, от чего раньше голова шла кругом, теперь оказывается простым и ясным: треугольник Паскаля, математическая бесконечность, магические свойства чисел, последовательность Фибоначчи, золотое сечение. А ещё профессиональный фокусник Артур Бенджамин делится секретами математических фокусов. Продемонстрируйте их – ваши зрители точно потянутся за калькуляторами, чтобы пересчитать.

Магия математики: Как найти x и зачем это нужно — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Магия математики: Как найти x и зачем это нужно», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Максимум против минимума

Дифференциация нужна для того, чтобы выяснять, где функция достигает своего максимума, а где – минимума. При каком, например, значении x парабола y = x ² – 8 x + 10 достигает своей низшей точки?

Как вы наверняка помните проведенная через нее касательная должна иметь - фото 466

Как вы, наверняка, помните, проведенная через нее касательная должна иметь наклон 0. Так как y' = 2 x – 8, уравнение 2 x – 8 = 0 приведет нас к минимуму при x = 4 (кстати, y = 16 – 32 + 10 = –6). Для y = f ( x ) значение x , удовлетворяющее f' ( x ) = 0, называется критической точкой функции f . Функция y = x ² – 8 x + 10, например, имеет только одну критическую точку – x = 4.

Где же максимум? В нашем примере его попросту нет: значение y -координаты для x ² – 8 x + 10 может быть сколь угодно большим. Ограничить его можно одним единственным способом – определив для x пределы значений. Возьмем для примера 0 ≤ x ≤ 6. Тогда при x = 0 y будет равен 10, а при x = 6 – −2, то есть критической точкой для этой функции является x = 0. Обобщение этого приводит нас к одной очень важной теореме.

Теорема (теорема об экстремуме функции в точке):Если дифференцируемая на отрезке функция y = f ( x ) принимает максимальное или минимальное значение в точке x *, то x * должна быть либо критической точкой f , либо граничной точкой отрезка.

Давайте на секунду вернемся в начало главы, к задаче с лотком. Нам нужно, по сути, максимизировать функцию

y = (12 – 2 x x = 4 x ³ – 48 x ² + 144 x

где x должен находиться в диапазоне от 0 до 6. Нам нужно найти такой x , при котором значение y будет наибольшим. Так как наша функция представляет собой многочлен, ее производную можно найти как

y' = 12 x ² – 96 x + 144 = 12( x ² – 8 x + 12) = 12( x – 2)( x – 6)

Следовательно, ее критическими точками будут x = 2 и x = 6.

А так как мы знаем, что при объеме, равном 0, и конечных точках, равных 0 и 6, объем будет минимальным, нам остается только одна критическая точка – x = 2. Именно она и даст нам максимум – y = 128 см³.

Правила дифференцирования

Чем больше функций мы продифференцируем, тем больше задач сможем решить. Пожалуй, самой важной функцией в исчислении является показательная функция y = e x . Ее особенность в том, что она равна собственной производной.

Теорема:Если y = e x , то y' = e x .

Отступление

Почему f ( x ) = e xсоответствует f '( x ) = e x? Смотрите, в чем секрет. Сначала обратите внимание на то, что

Магия математики Как найти x и зачем это нужно - изображение 467

Вспомним, что е , по сути, есть

Магия математики Как найти x и зачем это нужно - изображение 468

что означает, что с увеличением n значение члена (1 + 1/ n ) nбудет все ближе и ближе подходить к e . Теперь предположим, что h = 1/ n . При очень большом значении n h = 1/ n находится очень близко к 0. Следовательно, при h , близком к 0,

e ≈ (1 + h )1/ h

Возведя обе части в степень h (и помня, что ( a b ) c = a bc ), получаем

А есть ли еще такие функции которые равны своим производным Есть Но все они - фото 469

А есть ли еще такие функции, которые равны своим производным? Есть. Но все они сводятся к y = ce x , где c заменяется любым действительным числом (в том числе и 0, который превращает функцию в постоянную y = 0).

Не так давно мы выяснили, что при сложении функций производная суммы равна сумме производных. А что насчет умножения? Увы, но производная произведения не равна произведению производных. Тем не менее посчитать ее не очень сложно – для этого достаточно воспользоваться несложной теоремой.

Теорема (правило дифференцирования произведения функций):Если y = f ( x ) g ( x ), то

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Магия математики: Как найти x и зачем это нужно»

Представляем Вашему вниманию похожие книги на «Магия математики: Как найти x и зачем это нужно» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Магия математики: Как найти x и зачем это нужно»

Обсуждение, отзывы о книге «Магия математики: Как найти x и зачем это нужно» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x