Артур Бенджамин - Магия математики - Как найти x и зачем это нужно

Здесь есть возможность читать онлайн «Артур Бенджамин - Магия математики - Как найти x и зачем это нужно» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2016, ISBN: 2016, Издательство: Литагент Альпина, Жанр: foreign_edu, Математика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Магия математики: Как найти x и зачем это нужно: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Магия математики: Как найти x и зачем это нужно»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Почему нельзя было раньше узнавать о числах, алгебре и геометрии в такой увлекательной форме? Почему нельзя было сразу объяснить, зачем нам все эти параболы, интегралы и вероятности. Оказывается, математика окружает нас. Она повсюду! По параболе льется струя воды из фонтана, а инженеры используют свойства параболы, чтобы рассчитать траекторию полета самолетов и спутников. С помощью интегралов можно вычислить, сколько вам нужно линолеума, чтобы застелить помещение непрямоугольной формы. А умение вычислять вероятность события поможет выиграть в покер.
«Магия математики» – та книга, о которой вы мечтали в школе. Все, от чего раньше голова шла кругом, теперь оказывается простым и ясным: треугольник Паскаля, математическая бесконечность, магические свойства чисел, последовательность Фибоначчи, золотое сечение. А ещё профессиональный фокусник Артур Бенджамин делится секретами математических фокусов. Продемонстрируйте их – ваши зрители точно потянутся за калькуляторами, чтобы пересчитать.

Магия математики: Как найти x и зачем это нужно — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Магия математики: Как найти x и зачем это нужно», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
C / D ≈ 3,14

Число π определяется как постоянная величина, представляющая собой соотношение длины круга к его диаметру. То есть

π = C / D

И π остается неизменным для абсолютно любой окружности! Если хотите, можете преобразовать эту формулу для подсчета длины окружности: зная диаметр D или радиус r той или иной окружности, вы можете просто посчитать

C = π D

или

C = 2π r

Цифровое выражение π начинается с

π = 3,14159…

Чуть позже мы узнаем, что идет дальше, после 9, а заодно обсудим некоторые свойства этого числа.

Отступление

Определить длину окружности «на глазок» не так-то легко. Испытайте себя – возьмите высокий стакан и постарайтесь прикинуть, что больше: его высота или длина окружности? Уверен, большинство проголосует за высоту… и почти наверняка вы окажетесь неправы: чаще всего больше будет именно длина окружности. Не верите? Проверить достаточно легко: просто измерьте большим и указательным пальцами диаметр стакана и трижды отложите этот отрезок вдоль его стенки.

Теперь можно смело отвечать на первый из двух вопросов, заданных в начале главы. Если мы представим экватор в виде идеального круга с длиной окружности, равной 40 075 км, его радиус составит

Но значение радиуса не так уж для нас и важно куда важнее знать насколько - фото 326

Но значение радиуса не так уж для нас и важно – куда важнее знать, насколько увеличится этот радиус, если к длине окружности прибавится три метра – совсем ненамного, примерно на 3/2π ≈ 0,5 метра. Следовательно, под веревкой окажется достаточно места, чтобы проползти, но недостаточно, чтобы пройти в полный рост (если, конечно, вы не танцор лимбо [21]).

Но самым удивительным здесь будет не столько сам ответ, сколько тот факт, что полученные нами 0,5 м ни капельки не зависят от изначальной длины окружности – вы придете к тому же результату независимо от того, обвязываете ли вы веревкой Землю, Юпитер, Плутон или теннисный мячик. Например, радиус круга с длиной окружности, равной 15 м, составит 15/(2π) ≈ 2,38. Прибавив 3 метра, получим новый радиус 18/(2π) ≈ ≈ 2,86, который будет больше старого примерно на 0,5 метра.

Отступление

А вот еще один очень важный факт из геометрии окружностей.

Теорема:Предположим, что точки X и Y лежат на окружности строго друг напротив друга. Тогда при любом положении третьей точки PXPY = 90°.

На рисунке, например, хорошо видно, что углы ∠ XAY , ∠ XBY и ∠ XCY являются прямыми.

ДоказательствоПроведем линию радиуса из точки O к точке P Положим XPO x - фото 327

Доказательство:Проведем линию радиуса из точки O к точке P . Положим ∠ XPO = x , а ∠ YPO = y . Наша цель – показать, что x + y = 90°.

Так как отрезки OX и OP суть радиусы окружности их длина равна r - фото 328

Так как отрезки OX и OP суть радиусы окружности, их длина равна r , следовательно, треугольник XPO будет равнобедренным. Согласно теореме о равнобедренных треугольниках, ∠ OXP = ∠ XPO = x . По той же логике отрезок OY является радиусом, а ∠ OYP = ∠ YPO = y . Поскольку сумма углов треугольника XYP должна быть равна 180°, получаем 2 x + 2 y = 180°, а значит, x + y = 90°, что и требовалось доказать.☺

Теорема эта является частным случаем другой, самой любимой моей во всей геометрии теоремы о центральном угле, которой посвящено следующее «Отступление».

Отступление

Ответ на второй вопрос нашей мини-викторины может дать теорема о центральном угле . Возьмем две случайные точки X и Y , расположенные на окружности. Бóльшая дуга – это длинный путь от X и Y, меньшая – короткий путь. Теорема о центральном угле утверждает, что вне зависимости от положения точки P на большей дуге, проходящей от X к Y , размер угла ∠ XPY будет постоянным , а более конкретно – равным половине центрального углаXOY . Если при этом расположить на меньшей дуге точку Q , получим ∠ XQY = 180° – ∠ XPY .

Например если XOY 100 тогда при любом положении P на большей дуге - фото 329

Например, если ∠ XOY = 100°, тогда при любом положении P на большей дуге, проходящей от X к Y , ∠ XPY = 50°, а при любом положении Q на меньшей дуге, проходящей от X к Y , ∠ XQY = 130°.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Магия математики: Как найти x и зачем это нужно»

Представляем Вашему вниманию похожие книги на «Магия математики: Как найти x и зачем это нужно» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Магия математики: Как найти x и зачем это нужно»

Обсуждение, отзывы о книге «Магия математики: Как найти x и зачем это нужно» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x