Данный тест можно проводить несколькими способами в GRETL, рассмотрим каждый из них на примере рассматриваемой модели.
Сформулируем гипотезу о совместной незначимости регрессоров
,
.
не так
Результаты оценивания регрессии без ограничения приведены на рис. 5.1, сумма квадратов остатков данной модели
.
Рис. 5.1
Оценим регрессию с ограничением, то есть исключим из нее переменные с коэффициентами, подозрительными на совместную незначимость. Для этого можно, очевидно, по новой оценить модель, но можно и в существующей модели выбрать пункт меню Правка – Изменить модель и удалить регрессоры с коэффициентами, подозрительными на совместную незначимость. Результат оценивания модели с ограничением представлен на рис. 5.2.
Сумма квадратов остатков в модели с ограничением
.
Далее рассчитаем значение F- статистики:
Критическое значение статистики составляет
, таким образом,
, гипотеза о совместной незначимости коэффициентов при этих регрессорах на 5 %-ном уровне значимости принимается. Оба регрессора могут быть исключены из модели, и тогда окончательной спецификацией будет модель с ограничением:
Рис. 5.2
Тест на совместную незначимость коэффициентов также можно провести автоматически. Для этого, после того как было оценено исходное уравнение, в меню окна результатов нужно выбрать Тесты – Избыточные переменные .
Рис. 5.3
После этого в меню можно выбрать одну из опций оценивания: оценить сокращенную модель (аналог того теста, который был показан выше) или проверить избыточность переменных с использованием теста Вальда [9].
Результат оценивания с использованием сокращенной модели представлен на рис. 5.4.
Рис. 5.4
При данном методе проверки также рассчитывается F- статистика и ее значение совпадает с тем, что было получено вручную. При этом приводится оцененный вариант короткой модели (модели с ограничением). Нулевая гипотеза состоит в том, что указанные на этапе тестирования переменные
нулевые. Для проверки этой гипотезы можно воспользоваться рассчитанным значением F- статистики и сравнить его с критической точкой, как это было проделано, а можно обратить внимание на р- значение = 0,254184, то есть вероятность ошибиться, отвергнув нулевую гипотезу о незначимости коэффициентов, составляет примерно 0,26. Так как р- значение > 0,05 (больше зафиксированного уровня значимости), мы принимаем нулевую гипотезу, указанные коэффициенты не значимы на 5 %-ном уровне, и соответствующие регрессоры нужно исключить из модели. Корректный вариант модели – модель с ограничением.
Читать дальше