Ян Лекун - Как учится машина. Революция в области нейронных сетей и глубокого обучения

Здесь есть возможность читать онлайн «Ян Лекун - Как учится машина. Революция в области нейронных сетей и глубокого обучения» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2021, ISBN: 2021, Жанр: Технические науки, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Как учится машина. Революция в области нейронных сетей и глубокого обучения: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Как учится машина. Революция в области нейронных сетей и глубокого обучения»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Мы живем во время революции, еще 50 лет назад казавшейся невероятной, – революции в области умных машин, которые теперь обучаются самостоятельно, вместо того чтобы просто выполнять запрограммированные команды. И возможности таких машин огромны: распознавание изображений, лиц и голосов, переводы на сотни языков, беспилотное управление автомобилями, обнаружение опухолей на медицинских снимках и многое другое.
Автор книги Ян Лекун стоит у истоков этой революции. Лауреат премии Тьюринга, профессор Нью-Йоркского университета и руководитель фундаментальными исследованиями в Facebook, он является одним из изобретателей глубокого обучения, применяемого к так называемым искусственным нейронным сетям, архитектура и функционирование которых вдохновлены устройством человеческого мозга. В своей книге он, не прибегая к метафорам, делится своим научным подходом на стыке компьютерных наук и нейробиологии, проливая свет на будущее искусственного интеллекта, связанные с ним проблемы и перспективы.
Сегодня искусственный интеллект действительно меняет все наше общество. Эта понятная и доступная книга перенесет вас в самое сердце машины, открывая новый увлекательный мир, который уже является нашей реальностью.

Как учится машина. Революция в области нейронных сетей и глубокого обучения — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Как учится машина. Революция в области нейронных сетей и глубокого обучения», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Коктейль из старого и нового

Сегодняшние приложения, как правило, используют сочетание машинного обучения, GOFAI и классических вычислений. Рассмотрим машину, способную управлять автомобилем без водителя. Бортовая система визуального распознавания, обученная распознавать визуальные объекты и сигналы, присутствующие на дороге, использует определенную архитектуру нейронной сети, называемую «сверточной сетью». Но решение, которое принимает автопилот автомобиля, когда он «видит» разметку полосы движения, тротуар, припаркованный автомобиль или велосипед, зависит от традиционных систем планирования траектории движения, с правилами, написанными вручную, или же систем, основанных на правилах, которые относятся к области GOFAI.

Полностью автономные транспортные средства находятся все еще на этапе тестирования, но ряд коммерческих автомобилей, подобных «Tesla» 2015 г., уже имеют системы помощи водителю с использованием сверточных сетей. Регуляторы скорости, оснащенные системами технического зрения, берут транспортное средство под автономное управление на автостраде, удерживают его в пределах полосы движения или автоматически меняют ее после того, как водитель включает сигнал поворота, и при этом следят за наличием других автомобилей вокруг.

Тест Тьюринга

Мы будем писать о возможностях и приложении искусственного интеллекта на протяжении всей этой книги, но сейчас пришло время сделать шаг назад. Как определить общие черты всех этих интеллектуальных машин?

Я бы сказал, что искусственный интеллект – это способность машины выполнять задачи, обычно выполняемые животными и людьми, то есть воспринимать, рассуждать и действовать. Эти свойства неотделимы от способности учиться, как это наблюдается и у живых существ. Системы искусственного интеллекта – это просто очень сложные электронные схемы и компьютерные программы. Но возможности хранения информации, доступ к памяти, скорость вычислений и возможности обучения позволяют им «абстрагироваться» от конкретных примеров, содержащейся в огромных объемах данных.

Воспринимать, рассуждать и действовать. Алана Тьюринга – английского математика, оказавшего существенное влияние на развитие информатики и расшифровавшего Enigma – систему шифрования сообщений немецкой армии времен Второй мировой войны, можно назвать первым «пророком» обучающихся машин. Он уже проникся важностью обучения, когда написал: «Вместо того чтобы пытаться создать программу, имитирующую сознание взрослого, почему бы не попытаться создать такую, которая имитирует ум ребенка. Ведь если ум ребенка получает соответствующее воспитание, он становится умом взрослого человека» [8] Alan Turing, Computing machinery and intelligence, Mind , october 1950, vol. 59, n236. .

Имя Алана Тьюринга связано, кроме того, со знаменитым тестом, суть которого сводится к диалогу между человеком и двумя собеседниками, которых он не видит: компьютером и еще одним человеком [9] То же. . Если по истечении некоторого заданного времени человек не определяет, кто из двух «собеседников» является машиной, значит, машина успешно прошла тест. Но достижения в области ИИ сегодня таковы, что эксперты больше не считают тест Тьюринга эффективным. Способность вести осмысленный диалог является лишь одной из форм интеллекта, и здесь искусственный интеллект легко может обмануть даже опытного эксперта: для этого машине достаточно выдать себя за рассеянного и слегка аутичного подростка, плохо знающего английский язык, чтобы объяснить недостаточное понимание собеседника и ошибки в собственной речи.

Постоянное совершенствование

Я уверен, что глубокое обучение – это неотъемлемая часть будущего искусственного интеллекта. Однако на сегодняшний день эти системы не способны к логическим рассуждениям. В то же время подходы к ИИ, основанные на логике, в нынешнем их состоянии несовместимы с обучением. Наша важнейшая задача на ближайшие годы – сделать эти два подхода совместимыми друг с другом.

Таким образом, глубокое обучение пока остается очень мощным… и очень ограниченным инструментом. Речь не идет о том, чтобы заставить машину, обученную игре в шахматы, работать, и наоборот. Она выполняет действия, не имея ни малейшего представления о том, что делает, и не обладает здравым смыслом. Если бы системы искусственного интеллекта были помещены на шкалу интеллектуальных способностей от мыши до человека, то они оказались бы намного ближе к мыши, чем к человеку – и это несмотря на то, что производительность ИИ в точных и узкоспециализированных задачах является сверхчеловеческой.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Как учится машина. Революция в области нейронных сетей и глубокого обучения»

Представляем Вашему вниманию похожие книги на «Как учится машина. Революция в области нейронных сетей и глубокого обучения» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Как учится машина. Революция в области нейронных сетей и глубокого обучения»

Обсуждение, отзывы о книге «Как учится машина. Революция в области нейронных сетей и глубокого обучения» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x