Ян Лекун - Как учится машина. Революция в области нейронных сетей и глубокого обучения

Здесь есть возможность читать онлайн «Ян Лекун - Как учится машина. Революция в области нейронных сетей и глубокого обучения» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2021, ISBN: 2021, Жанр: Технические науки, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Как учится машина. Революция в области нейронных сетей и глубокого обучения: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Как учится машина. Революция в области нейронных сетей и глубокого обучения»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Мы живем во время революции, еще 50 лет назад казавшейся невероятной, – революции в области умных машин, которые теперь обучаются самостоятельно, вместо того чтобы просто выполнять запрограммированные команды. И возможности таких машин огромны: распознавание изображений, лиц и голосов, переводы на сотни языков, беспилотное управление автомобилями, обнаружение опухолей на медицинских снимках и многое другое.
Автор книги Ян Лекун стоит у истоков этой революции. Лауреат премии Тьюринга, профессор Нью-Йоркского университета и руководитель фундаментальными исследованиями в Facebook, он является одним из изобретателей глубокого обучения, применяемого к так называемым искусственным нейронным сетям, архитектура и функционирование которых вдохновлены устройством человеческого мозга. В своей книге он, не прибегая к метафорам, делится своим научным подходом на стыке компьютерных наук и нейробиологии, проливая свет на будущее искусственного интеллекта, связанные с ним проблемы и перспективы.
Сегодня искусственный интеллект действительно меняет все наше общество. Эта понятная и доступная книга перенесет вас в самое сердце машины, открывая новый увлекательный мир, который уже является нашей реальностью.

Как учится машина. Революция в области нейронных сетей и глубокого обучения — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Как учится машина. Революция в области нейронных сетей и глубокого обучения», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Посмотрим правде в глаза: машины, какими бы мощными и сложными они ни были, по-прежнему очень узкоспециализированы. Они учатся менее эффективно, чем люди и животные. По сей день у них нет ни здравого смысла, ни совести. По крайней мере, пока! Несомненно, они превосходят людей в определенных задачах: например, побеждают их в го и в шахматах; они переводят сотни языков, они узнают растения или насекомых, они обнаруживают опухоли на медицинских изображениях. Но человеческий мозг сохраняет значительное преимущество перед машинами в том, что он более универсален и гибок.

Смогут ли машины догнать нас, и если да – то как скоро?

Глава 1

Революция в искусственном интеллекте

Искусственный интеллект проникает во все секторы экономики, связи, здравоохранения и даже транспорта – благодаря созданию беспилотных автомобилей… Многие наблюдатели говорят уже не о технологической эволюции, а о революции.

Вездесущий искусственный интеллект

«Алекса, какая погода в Буэнос-Айресе?» Менее чем за секунду «умная» акустическая система записывает вопрос, передает его через домашний Wi-Fi на серверы Amazon, которые транскрибируют и интерпретируют его. Затем они получают информацию от метеорологической службы и возвращают ответ, который Алекса озвучивает приятным голосом: «В настоящее время в Буэнос-Айресе, Аргентина, температура воздуха 22 ℃. Пасмурно».

В офисе ИИ – прилежный помощник. Он работает быстро, и его не пугают повторяющиеся задачи. Он может просмотреть миллионы записей в базе денных в поисках цитаты и найти нужную за долю секунды благодаря возможностям современных компьютеров, скорость вычислений у которых сделалась почти невероятной.

Один из первых программируемых электронных компьютеров, ENIAC, построенный в 1945 г. в Университете Пенсильвании для расчета траектории полета снарядов, выполнял приблизительно 360 умножений в секунду для десятизначных цифр. Сейчас эта машина выглядит неповоротливым доисторическим чудищем. Процессоры нынешних персональных компьютеров в миллиард раз быстрее. Они имеют производительность в сотни гигафлопс [1] FLOPS (обозначается также как flops, flop/s, произносится по-русски как «флопс») – акроним от англ. Floating-point Operations Per Second (число операций с плавающей точкой в секунду). Представляет собой внесистемную единицу измерения производительности компьютеров. Правописание и склонение термин в русском языке еще не устоялось: иногда пишут «флоп», иногда «флопс». – Прим. ред. . Графические процессоры, используемые нашими компьютерами для визуализации, имеют производительность в несколько десятков терафлопс. Гигантские числа с впечатляющими названиями.

Их уже не остановить! Современные суперкомпьютеры объединяют десятки тысяч этих графических процессоров и достигают скорости в сотни тысяч терафлопс, производя колоссальные объемы вычислений для всевозможных симуляций: прогнозирования погоды, моделирования климата, расчета воздушного потока вокруг самолета или конформации белка, моделирования таких головокружительных событий, как первые мгновения существования Вселенной, смерть звезды, эволюция галактик, столкновения элементарных частиц или ядерный взрыв.

Такие симуляции включают численное решение дифференциальных уравнений или уравнений в частных производных – это задача, которую в прошлом математикам приходилось решать вручную. И все же – так ли умны эти вычислительные гиганты, как математики прошлых лет? Нет, конечно… во всяком случае, пока. Одна из задач развития искусственного интеллекта заключается в том, чтобы когда-нибудь научить машины использовать их огромную вычислительную мощность для решения интеллектуальных задач, сейчас подвластных только животным и людям.

Не стоит судить только по внешности. Программы искусственного интеллекта умеют хорошо учиться, но лишь до определенного момента. В 2017 г. робот Норико Араи – специалиста Токийского университета, изучавшего влияние ИТ на общество, успешно сдал вступительный экзамен в один из японских университетов. Программа, получившая название Todai (название университета), сдала эссе, экзамены по математике и английскому языку лучше 80 % абитуриентов. Но это не значит, что система была умной: на самом деле робот вообще не понимал, что он пишет! Успех программы скорее говорит о несовершенстве как вступительных испытаний в высшие успешные заведения Японии, так и машинного интеллекта. Мы были бы рады, если, в конечном счете, Todai провалится на более продуманно организованных экзаменах.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Как учится машина. Революция в области нейронных сетей и глубокого обучения»

Представляем Вашему вниманию похожие книги на «Как учится машина. Революция в области нейронных сетей и глубокого обучения» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Как учится машина. Революция в области нейронных сетей и глубокого обучения»

Обсуждение, отзывы о книге «Как учится машина. Революция в области нейронных сетей и глубокого обучения» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x