Ян Лекун - Как учится машина. Революция в области нейронных сетей и глубокого обучения

Здесь есть возможность читать онлайн «Ян Лекун - Как учится машина. Революция в области нейронных сетей и глубокого обучения» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2021, ISBN: 2021, Жанр: Технические науки, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Как учится машина. Революция в области нейронных сетей и глубокого обучения: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Как учится машина. Революция в области нейронных сетей и глубокого обучения»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Мы живем во время революции, еще 50 лет назад казавшейся невероятной, – революции в области умных машин, которые теперь обучаются самостоятельно, вместо того чтобы просто выполнять запрограммированные команды. И возможности таких машин огромны: распознавание изображений, лиц и голосов, переводы на сотни языков, беспилотное управление автомобилями, обнаружение опухолей на медицинских снимках и многое другое.
Автор книги Ян Лекун стоит у истоков этой революции. Лауреат премии Тьюринга, профессор Нью-Йоркского университета и руководитель фундаментальными исследованиями в Facebook, он является одним из изобретателей глубокого обучения, применяемого к так называемым искусственным нейронным сетям, архитектура и функционирование которых вдохновлены устройством человеческого мозга. В своей книге он, не прибегая к метафорам, делится своим научным подходом на стыке компьютерных наук и нейробиологии, проливая свет на будущее искусственного интеллекта, связанные с ним проблемы и перспективы.
Сегодня искусственный интеллект действительно меняет все наше общество. Эта понятная и доступная книга перенесет вас в самое сердце машины, открывая новый увлекательный мир, который уже является нашей реальностью.

Как учится машина. Революция в области нейронных сетей и глубокого обучения — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Как учится машина. Революция в области нейронных сетей и глубокого обучения», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Могущество алгоритма

Алгоритм – это последовательность инструкций. Вот и все. В этом нет ничего волшебного. Ничего непонятного. Приведем пример. Возьмем список цифр, которые я хочу расставить в порядке возрастания. Я пишу компьютерную программу, которая считывает первое число, сравнивает его со следующим и меняет их положение, если первое больше второго. Затем я сравниваю второе и третье и повторяю ту же операцию до последнего числа в списке. Затем я возвращаюсь к списку столько раз, сколько необходимо, пока при очередном проходе число произошедших замен не станет равным нулю.

Данный алгоритм сортировки списка чисел называется «сортировкой пузырьком». Я могу перевести его в серию точных инструкций на вымышленном языке программирования [10] https://fr.wikipedia.org/wiki/Tri_a_bulles . .

Сортировка пузырьком (Таблица Т)

### дляi в диапазоне от(значение T) –1 до1

### ### дляj в диапазоне от0 доi –1

### ### ### еслиT[j+1] < T[j]

### ### ### ### обменять (T, j+1, j)

Возьмите одно значение, сравните его с другим, прибавьте его к третьему, выполните такие-то и такие-то математические операции, циклы, проверьте, является ли условие истинным или ложным и т. д. Алгоритм – все равно, что кулинарный рецепт.

Мы обычно говорим об «алгоритме Фейсбука» или «алгоритме Гугла». Это неправильно. Скорее, алгоритмом (точнее, набором алгоритмов) является механизм, обеспечивающий работу поискового сайта, который создает список всех сайтов, содержащих поисковый текст. Таких сайтов может быть сотни, даже тысячи! Затем каждому из этих сайтов присваивается ряд баллов, полученных с помощью других алгоритмов, написанных вручную или выработанных самой машиной в процессе обучения. Эти баллы оценивают популярность сайта, его надежность, релевантность его содержания, наличие ответа, если поисковая фраза является вопросом, а также соответствие содержания интересам пользователя. Довольно сложное дело.

Однако, что касается обучаемых систем, то программный код, который заставляет их работать и вычисляет баллы, достаточно прост и мог бы уместиться в нескольких строках, если бы нас не интересовала скорость его выполнения (на самом деле требования к быстродействию приводят к его усложнению). Реальная сложность системы заключается не в коде, который вычисляет ее выходные данные, а в связях между нейронами сети, которые, в свою очередь, зависят от архитектуры этой сети и ее обучения.

Прежде чем мы с вами исследуем внутреннее устройство интеллектуальной машины, я хочу обрисовать историю искусственного интеллекта, начиная с середины XX века. Это – захватывающая история, в которой я принимаю участие уже довольно давно, и которая состоит из предвидений и дискуссий, скачков вперед и периодов застоя, где между собой столкнулись ученые, верящие в машинную логику, и те, кто, опираясь на нейробиологию и кибернетику, работают, как и я, над развитием способностей машин к обучению.

Глава 2

Краткая история искусственного интеллекта… и моего карьерного пути

Вечный поиск

Американский автор Памела Маккордак заметила как-то, что история искусственного интеллекта начинается с «извечного желания играть в Бога». Издавна человек пытается сконструировать устройства, создающие иллюзию жизни. В XX веке достижения науки дали надежду на механизацию мыслительного процесса. С появлением первых роботов и компьютеров в 1950-х гг. некоторые утописты предсказывали, что вычислительные машины быстро достигнут уровня человеческого интеллекта. Фантасты описали такие компьютеры во всех подробностях, но на сегодняшний день мы еще далеки от их воплощения в реальность.

Прогресс на этом долгом пути зависит от технических инноваций: более быстрые процессоры, более емкие устройства памяти. В 1977 г. у суперкомпьютера Cray-1 вычислительная мощность составляла 160 MFLOPS (мегафлопс). Он весил 5 т, потреблял 115 кВт·ч и стоил 8 млн долларов. На сегодняшний день игровая видеокарта стоимостью 300 евро, которую можно найти в компьютере у каждого второго увлеченного видеоиграми школьника, обеспечивает скорость 10 TFLOPS (терафлопс), или в 60 000 раз больше. Скоро любой смартфон сможет похвастаться такой мощностью.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Как учится машина. Революция в области нейронных сетей и глубокого обучения»

Представляем Вашему вниманию похожие книги на «Как учится машина. Революция в области нейронных сетей и глубокого обучения» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Как учится машина. Революция в области нейронных сетей и глубокого обучения»

Обсуждение, отзывы о книге «Как учится машина. Революция в области нейронных сетей и глубокого обучения» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x