Ян Лекун - Как учится машина. Революция в области нейронных сетей и глубокого обучения

Здесь есть возможность читать онлайн «Ян Лекун - Как учится машина. Революция в области нейронных сетей и глубокого обучения» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2021, ISBN: 2021, Жанр: Технические науки, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Как учится машина. Революция в области нейронных сетей и глубокого обучения: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Как учится машина. Революция в области нейронных сетей и глубокого обучения»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Мы живем во время революции, еще 50 лет назад казавшейся невероятной, – революции в области умных машин, которые теперь обучаются самостоятельно, вместо того чтобы просто выполнять запрограммированные команды. И возможности таких машин огромны: распознавание изображений, лиц и голосов, переводы на сотни языков, беспилотное управление автомобилями, обнаружение опухолей на медицинских снимках и многое другое.
Автор книги Ян Лекун стоит у истоков этой революции. Лауреат премии Тьюринга, профессор Нью-Йоркского университета и руководитель фундаментальными исследованиями в Facebook, он является одним из изобретателей глубокого обучения, применяемого к так называемым искусственным нейронным сетям, архитектура и функционирование которых вдохновлены устройством человеческого мозга. В своей книге он, не прибегая к метафорам, делится своим научным подходом на стыке компьютерных наук и нейробиологии, проливая свет на будущее искусственного интеллекта, связанные с ним проблемы и перспективы.
Сегодня искусственный интеллект действительно меняет все наше общество. Эта понятная и доступная книга перенесет вас в самое сердце машины, открывая новый увлекательный мир, который уже является нашей реальностью.

Как учится машина. Революция в области нейронных сетей и глубокого обучения — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Как учится машина. Революция в области нейронных сетей и глубокого обучения», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В этой книге я также хочу проследить свой интеллектуальный путь в рамках этого необычного научного приключения. Мое имя по-прежнему связано с так называемыми «сверточными» нейронными сетями, которые подняли распознавание объектов компьютером на небывалую высоту. Вдохновленные структурой и функцией зрительной коры головного мозга млекопитающих, они могут эффективно обрабатывать изображения, видео, звук, голос, текст и другие типы сигналов.

В чем состоит деятельность исследователя? Откуда берутся его идеи? Что касается меня, то я уделяю много внимания интуитивным догадкам. Дальше наступает очередь математики. Я знаю, что другие ученые действуют диаметрально противоположным образом. Я проецирую в свою голову пограничные случаи, которые Эйнштейн называл «мысленными экспериментами», благодаря которым вы сначала представляете ситуацию, а затем пытаетесь рассмотреть ее следствия для лучшего понимания проблемы.

Моя интуиция подпитывается чтением книг. Я просто пожираю книги. Я исследую работы тех, кто был до меня. Вы никогда ничего не создадите в одиночку. Идеи живут, дремлют, и они возникают в чьей-то голове, потому что пришло время. Так рождаются исследования. Они продвигаются неравномерно, то прыжками, то шажками, а порой – даже пятясь. Но деятельность эта всегда коллективна. Образ одинокого исследователя, делающего в своей лаборатории мировое открытия, – не более, чем романтическая фантастика.

Путь разработки глубокого обучения не был простым. Приходилось бороться со скептиками всех мастей. Сторонники «классического» искусственного интеллекта, основанного исключительно на логике и рукописных программах, пророчили нам провал. Люди, добившиеся успеха в традиционном машинном обучении, показывали на нас пальцами, хотя глубокое обучение, над которым мы работали, и было по существу набором определенных методов в более широкой области машинного обучения. Однако тот тип машинного обучения, который позволял машине решать задачу путем сравнения конкретных примеров внутри массива данных, а не прямым исполнением написанной программы, тоже имел свои пределы. Мы пытались их преодолеть. Средством для этого послужили глубокие нейронные сети. Они были очень эффективными, но при этом сложными в математическом анализе и в реализации. Поэтому мы прослыли чуть ли не алхимиками…

Сторонники традиционного машинного обучения перестали высмеивать нейронные сети в 2010 г., когда последние наконец продемонстрировали свою эффективность. Лично я никогда не сомневался в успехе. Я всегда был убежден, что человеческий интеллект настолько сложен, что для того, чтобы его скопировать, нужно стремиться построить самоорганизующуюся систему, способную учиться самостоятельно, через опыт.

Сегодня эта форма искусственного интеллекта так и осталась наиболее перспективной, благодаря доступности больших баз данных и прогрессу в разработке оборудования, например графических процессоров, намного увеличивших вычислительную мощность компьютеров.

По окончании учебы я планировал провести несколько лет в Северной Америке. И я все еще там! После некоторых жизненных перипетий я попал в компанию Facebook, владеющую сайтом с 2 миллиардами активных пользователей, чтобы вести фундаментальные исследования в области ИИ. Это – тоже часть моей публичной биографии. Я не хочу скрывать ничего из того, что происходит в компании Марка Цукерберга, которой в 2018 г. были предъявлены серьезные обвинения, и чье безграничное расширение вызывает опасение. В любом случае – я сторонник открытости.

В марте 2019 г. я был удостоен премии Тьюринга за 2018 г. от Ассоциации вычислительной техники – своего рода Нобелевской премии в компьютерной области. Я разделил эту награду с двумя другими специалистами по глубокому обучению, Йошуа Бенджио и Джеффри Хинтоном, моими партнерами, с которыми мы много спорили, но всегда сходились в главном.

Я многим обязан всем этим встречам, месту, которое я со временем занял в сообществе безумных наследников кибернетики 1950-х гг., не устававшим задавать друг другу «детские» на вид, но глубокие по сути вопросы, вроде: «Как получается, что нейроны, очень простые объекты, соединяясь друг с другом, производят новое свойство, которое называется интеллектом?»

Теперь эта научная авантюра порождает новые важные вопросы. Отличается ли работа машины, которая распознает автомобиль посредством выделения таких элементов, как колеса, лобовое стекло и т. д. от работы нашей зрительной коры при идентификации той же самой машины? Что делать с наблюдаемым сходством между работой машины и мозгом человека или животного? Область исследования безгранична.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Как учится машина. Революция в области нейронных сетей и глубокого обучения»

Представляем Вашему вниманию похожие книги на «Как учится машина. Революция в области нейронных сетей и глубокого обучения» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Как учится машина. Революция в области нейронных сетей и глубокого обучения»

Обсуждение, отзывы о книге «Как учится машина. Революция в области нейронных сетей и глубокого обучения» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x