Магнитографический метод . С его помощью обнаруживают как поверхностные дефекты (типа трещин, непроваров, шлаковых включений, цепочек и скоплений пор, подрезов, прижогов и т. п.) при примерно равной с магнитопорошковым методом чувствительности, так и глубинные при расстояниях от поверхности до 20–25 мм. Он более универсален и пригоден для контроля деталей практически любых форм и размеров, в то время как магнитографический наиболее пригоден для проверки деталей относительно простой формы (цилиндров, труб, листов, брусков и т. п.). При магнитопорошковом методе на диагностируемые участки детали наносят ферромагнитные частицы либо мокрым методом, либо сухим. В первом случае частицы находятся во взвешенном состоянии в воде, керосине или минеральном масле, во втором они взвешены в воздухе. При попадании на намагниченную деталь над дефектом вследствие неоднородности магнитного поля, наличия местных магнитных полюсов намагниченные частички притягиваются к месту наибольшей концентрации магнитных линий. Ширина валика скопившихся частиц больше фактической ширины дефекта, что позволяет рельефно выявить форму и протяженность дефекта.
Магнитопорошковый метод контроля осуществляется в такой последовательности: подготовка детали – намагничивание – нанесение ферромагнитного порошка – расшифровка результатов контроля – размагничивание. При подготовке деталей очищают поверхности, которые будут контактировать с намагничивающими приспособлениями, удаляют загрязнения. Лакокрасочные покрытия толщиной более 30 мкм значительно снижают чувствительность магнитопорошкового контроля, поэтому их необходимо смыть. Он может осуществляться в приложенном магнитном поле и по остаточной намагниченности.
В первом случае намагничивание, нанесение суспензии и контроль проводят одновременно, во втором все операции выполняются раздельно. При намагничивании необходимо учесть, что наилучшее выявление дефекта будет тогда, когда магнитные линии располагаются перпендикулярно направлению предполагаемого дефекта. В сомнительных случаях проводят намагничивание в разных направлениях. После намагничивания или одновременно с ним (при контроле в приложенном поле) наносят на поверхность контролируемой детали ферромагнитный порошок. В качестве порошков применяют различные размельченные частицы черного, буровато-красного и белого цвета. Черные порошки изготавливают из измельченного тетраксида железа ( Fe 3O 4 ) с размером частиц не более 30 мкм, буровато-красные – из размельченного гаммаокисида железа ( γ - Fe 2O 3 ), белые – из алюминиевой пудры (ПАК-3) и никелевого или железного порошка (марки А). В некоторых случаях применяются магнитно-люминесцентные порошки. Добавка в порошки люминофора в смеси с другими веществами позволяет наблюдать индикаторный рисунок в ультрафиолетовых лучах. Суспензии могут составляться на основе керосина, масла МК8, трансформаторного масла или воды. Концентрация порошка в суспензии может колебаться от 5 до 25 г/дм 3. Ее подбирают в зависимости от вида намагничивания, формы контролируемой детали и характера дефекта. Например, при контроле галтельного перехода головки болта к цилиндрической части достаточно обеспечить концентрацию порошка в суспензии 10–15 г/дм 3, при контроле ответственных деталей двигателя она должна быть в пределах 20–25 г/дм 3. Суспензия наносится с помощью обливания (из шланга или резиновых груш, бачков) или погружения в ванну, сухой порошок – распылением в специальных установках.
Расшифровка результатов контроля проводится после отложения порошка на поверхности контролируемой детали. Например, над усталостными трещинами порошок накапливается в виде тонких четких линий, неметаллические включения выявляются в виде точечных скоплений или цепочек. При расшифровке индикаторного рисунка следует учесть, что могут появиться мнимые дефекты. Скопление ферромагнитного порошка может происходить не только над дефектом, но и над рисками, по границам резких структурных изменений. В этих случаях для проверки достоверности наличия трещины удаляют порошок, осматривают повреждение с помощью лупы и проводят повторное намагничивание. Иногда применяют другие виды неразрушающего контроля. Задача размагничивания заключается в том, чтобы свести к нулю остаточную индукцию. Для этого используют постепенно уменьшающееся переменное поле, создаваемое специальным соленоидом.
Читать дальше
Конец ознакомительного отрывка
Купить книгу