Прямое напряжение U пр , при котором через диод проходит допустимый прямой ток I пр-доп , так же как и обратный ток I обр , соответствующий допустимому обратному напряжению U обр-доп , — параметры также довольно близкие для больших групп диодов. Так, для плоскостных диодов прямое напряжение, как правило, составляет 0,3–0,5 в. Как видите, прямое напряжение у плоскостных диодов весьма мало. Несколько больше, но тоже невелико прямое напряжение U пр у точечных диодов.
Обратный ток I обр при напряжении U обр-доп у плоскостных диодов обычно составляет 0,5–1,5 ма (то есть 500—1500 мка), а у точечных диодов 0,01—0,2 ма (10—200 мка). Во всех случаях обратный ток через диод даже при предельно допустимом обратном напряжении весьма мал. Во всяком случае, обратный ток всегда во много раз меньше прямого.
Зная токи и напряжения, легко подсчитать прямое и обратное сопротивление диода ( R= U: I). Для плоскостных диодов прямое сопротивление обычно очень мало — оно составляет всего 0,1–3 ом (!), а обратное 50—500 ком или даже несколько Мом. Прямое сопротивление точечных диодов чаще всего лежит в пределах от 10 до 100 ом, обратное — от 1 до 10 Мом. Цифры эти полезно запомнить: в дальнейшем они позволят понять, что именно почувствует та или иная электрическая цепь при включении в нее диода.
У нас остался еще один неоплаченный долг — еще один вопрос, который возник при знакомстве с вольтамперной характеристикой диода (стр. 46): с чем связано появление двух изогнутых участков, двух загибов характеристики в районе нулевого напряжения? В поисках ответа нам придется еще раз внимательно посмотреть, что происходит в рn -переходе, причем не при прямом его включении и не при обратном, а в том случае, когда диод вообще никуда не включен, когда он предоставлен самому себе.
А действительно, как ведет себя рn -переход, когда к нему не приложено никакого напряжения? Начнем с того, что такого случая почти никогда не бывает. Даже если к рn -переходу не подключать батареи, то и в этом случае на нем будет действовать небольшое, если можно так сказать, «самодельное» напряжение. Чтобы пояснить, откуда оно берется, нам придется упомянуть еще об одном физическом явлении — о диффузии. С этим явлением, так же, скажем, как с возникновением примесной проводимости или с влиянием температуры на свойства полупроводника, мы будем довольно часто сталкиваться при знакомстве с полупроводниковыми триодами.
Если в каком-нибудь углу комнаты поставить банку с легко испаряющимся бензином, то его запах через некоторое время заполнит все помещение. Если в стакан чистой воды попадет капля туши, то пройдет несколько минут, и вся вода в стакане почернеет. Если в полупроводниковый кристалл насильно ввести некоторое количество свободных электронов, то вскоре они равномерно распределятся во всем объеме кристалла. Все три примера иллюстрируют хорошо известное физическое явление — диффузию.
Сущность ее состоит в том, что частицы — молекулы, атомы, электроны, — совершая свои обычные хаотические движения, постепенно передвигаются из районов с большой концентрацией в те районы, где этих частиц мало. Диффузия в том и состоит, что вещество старается распределиться равномерно в занимаемом объеме. Можно найти ей немало житейских аналогий, вспомнив, например, как люди равномерно размещаются на огромном пляже.
Диффузия наблюдается и в районе рn -перехода. Свободные электроны, сконцентрированные в зоне n , стремятся перейти в зону р , а дырки, наоборот, из зоны р направляются в зону n . Такое движение, казалось бы, должно продолжаться до тех пор, пока во всем кристалле концентрация дырок и электронов не станет одинаковой, пока не исчезнут зоны р и n . Однако этого не происходит. На борьбу с диффузией, которая хотела бы превратить диод в однородный кристалл, вступают могучие силы. Это электрические силы неподвижных зарядов — ионизированных атомов примеси (рис. 23).
Рис. 23. Силы диффузии стремятся ликвидировать рn-переход, равномерно «перемешать» свободные заряды в кристалле, однако этому препятствуют электрические силы неподвижных ионов.
Вы, конечно, не забыли, что дырки в зоне р , а свободные электроны в зоне n в нужных нам количествах появляются лишь после введения в полупроводник донорных или акцепторных примесей (рис. 14). Но атомы примеси, отдав свой электрон или, наоборот, забрав электрон у соседа, сами превращаются в неподвижные ионы. Атом донора (отдающий электрон) становится положительным ионом, атом акцептора (забирающий электрон) — отрицательным. Неподвижные ионы равномерно распределены по всему полупроводниковому кристаллу: положительные ионы в зоне n , отрицательные — в зоне р (рис. 12, 13).
Читать дальше