Жан-Поль Эймишен - Электроника?.. Нет ничего проще!

Здесь есть возможность читать онлайн «Жан-Поль Эймишен - Электроника?.. Нет ничего проще!» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 1975, Издательство: Энергия, Жанр: sci_radio, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Электроника?.. Нет ничего проще!: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Электроника?.. Нет ничего проще!»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Книга в занимательной форме знакомит читателя со многими областями одной из наиболее быстро развивающихся в настоящее время наук — электроники. Рассказывается о возможностях использования электроники в промышленности.
Книга рассчитана на широкий круг читателей.

Электроника?.. Нет ничего проще! — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Электроника?.. Нет ничего проще!», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Л. — Ты очень хорошо понял. Но в нашем примере с автомобилем, разумеется, не может быть резкого изменения пройденного пути, так как соответствующая этому изменению скорость была бы бесконечно большой…

Н. — Вот чему могли бы позавидовать все бегуны!

Интеграл

Л. — Но это невозможно, так как «бесконечно большую» скорость нужно было бы достичь за ничтожно малый отрезок времени, что в свою очередь требует бесконечно большого ускорения. Но поговорим теперь о математическом определении интегрирования. Ты можешь получить прекрасное представление на том же примере с автомобилем, если теперь предположить, что для каждого момента мы знаем не место машины на дороге, а ее скорость (например, зафиксировав самописцем показания спидометра). Задача сводится к определению пройденного автомобилем пути к соответствующему моменту времени.

Н. — Это совсем просто. Достаточно умножить скорость на время движения.

Л. — Твои рассуждения совершенно справедливы, но только для случая, когда скорость остается строго постоянной. Однако имеются серьезные основания полагать, что этого не случится. Наш автомобилист будет проезжать через населенные пункты, где ему придется снизить скорость, ему попадутся хорошие участки дороги, где он сможет «жать на всю железку», и в результате его скорость не будет постоянной.

Н. — Тогда я совсем не знаю, что делать…

Л. — Мы просто-напросто применим твой метод, но разделим время на небольшие интервалы, каждый из которых настолько короток, что в его пределах скорость можно рассматривать как неизменную…

Н. — Но это все изменяет! Твои расчеты не будут соответствовать реальной действительности.

Л. — Именно такого заявления от тебя я и ждал. Чем больше интервалов мы возьмем, тем ближе наша оценка будет к реальной действительности. Не забывай, что обычно скорость автомобиля довольно медленно изменяется во времени…

Н. — Я такого мнения не придерживаюсь. Помнишь я говорил тебе о своем приятеле, купившем спортивный автомобиль; ему нужно всего лишь несколько секунд, чтобы разогнать свою машину до 180 км/ч…

Л. — Согласен, но я-то говорил тебе о нормальных людях. Если мы возьмем очень короткий интервал времени, например, 1 сек, и если зафиксированная в какой-то момент этого интервала скорость будет около 36 км/ч (или 10 м/сек), то мы можем сказать, что пройденный за эту секунду путь будет очень близок к 10 м.

Складывая рассчитанные таким образом отрезки пути, пройденные за очень короткие интервалы времени, мы получим сумму, состоящую из огромного числа малых слагаемых, при этом полученный результат будет достаточно близок к истинному.

В своих действиях математика исходит из подобного представления, доводя дело до крайности — предполагая, что количество интервалов бесконечно растет, а протяженность их бесконечно уменьшается. В этом случае они говорят, что проинтегрировали некоторую функцию.

Н Термин этот мне в высшей степени не нравится Но как бы там ни было твой - фото 280

Н. — Термин этот мне в высшей степени не нравится. Но как бы там ни было, твой знаменитый «интеграл» кажется мне прямой противоположностью тому, о чем ты мне только что говорил, а именно производной. Если память мне не изменяет, вычисление производной позволяет определить скорость по местоположению, а противоположная операция позволяет рассчитать местоположение по скорости.

Л. — Ты очень правильно понял. Только математики говорят не противоположная, а обратная операция. Я думаю, что теперь ты видишь аналогию между интегрированием и действием схемы рис. 70…

Н. — Я не вижу никакого сходства.

Интегрирование с помощью схемы Л Сейчас увидишь Предположим что на вход - фото 281
Интегрирование с помощью схемы

Л. — Сейчас увидишь. Предположим, что на вход этой схемы я подаю постоянное напряжение. Какое напряжение получим мы на выходе?

Н. — Ну, разумеется, классическую кривую заряда конденсатора — кривая напряжения поднимается и затем округляется, стремясь достичь максимума, равного приложенному на вход постоянному напряжению.

Л. — Прекрасно, Незнайкин. Если внимательнее рассмотреть эту кривую, то заметим, что в ней имеется небольшой участок равномерного подъема, который соответствует времени, когда выходное напряжение мало по сравнению с входным. Впрочем, это абсолютно логично, ведь на выводах резистора действует разность входного и выходного напряжений. Если входное напряжение имеет постоянную величину, выходное удерживается небольшим и проходящий через R зарядный ток практически остается постоянным. В этих условиях заряд конденсатора нарастает равномерно (а правильнее сказать «линейно»).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Электроника?.. Нет ничего проще!»

Представляем Вашему вниманию похожие книги на «Электроника?.. Нет ничего проще!» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Электроника?.. Нет ничего проще!»

Обсуждение, отзывы о книге «Электроника?.. Нет ничего проще!» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x