Н. — В сущности это очень просто. Теперь я понимаю, почему ты так стремишься получить крутые фронт и срез: при медленном изменении напряжения конденсатор С успел бы зарядиться и перестал передавать изменения входного напряжения. Но и в этих условиях можно получить хороший результат, достаточно увеличить R или С (или обе величины) и тогда конденсатор С будет мало разряжаться во время изменения сигнала.
Л. — Незнайкин, ты сегодня определенно в прекрасной форме, но будь осторожен; если ты увеличишь произведение RC, может случиться, что между двумя сигналами конденсатор С не успеет полностью зарядиться; тогда выходное напряжение примет такую форму, которую я изобразил для тебя на рис. 69. Поэтому нужно сделать постоянную времени RC большой по сравнению с длительностью сигнала и малой по сравнению с периодом сигнала. Чем меньшую часть периода занимает сигнал, тем легче подобрать постоянную времени RC.
Рис. 69. Если постоянная времени RC-схемы достаточно велика по сравнению с периодом сигнала, то выходное напряжение принимает иную форму. Конденсатору Сне хватает времени полностью зарядиться.
Н. — Бедный сигнал, его совсем лишили человеческого лица! Исходную синусоиду (можно предположить, что сначала наш сигнал имел именно такую форму) с помощью триггера Шмитта превратили в прямоугольные сигналы, а затем в короткие импульсы с помощью твоей схемы с рис. 64… кстати, как называется эта схема?
Интегрирующая схема
Л. — Ее называют дифференцирующей схемой . Как видишь, ты напрасно испугался этого названия. Но мы на этом не остановимся, ибо сигнал можно подвергнуть и другим деформациям. Что ты думаешь о схеме на рис. 70? Ее название я скажу тебе потом.
Рис. 70. Фильтр нижних частот, используемый в качестве интегрирующей схемы.
Н. — Это та же самая схема, что показана на рис. 64, только ты поменял местами R и С .
Л. — Но эта деталь все изменяет! Что мы получим на выходе схемы, если на ее вход подадим прямоугольные сигналы?
Н. — Здесь имеются резистор и соединенный с ним последовательно конденсатор, поэтому мы возможно получим то, что ты раньше нарисовал на рис. 68, б .
Л. — Какой ужас! Ведь я тебе объяснил, что «напряжение на выводах конденсатора не может измениться на конечную величину за равное нулю время». Но посмотри, Незнайкин, если на вход схемы (см. рис. 64) подать прямоугольные сигналы (см. рис. 68, а ) и если на выходе, т. е. на выводах резистора R, получим сигнал, изображенный на рис. 68, б то на выводах конденсатора должен быть такой сигнал, который, будучи прибавленным к сигналу на рис. 68, б , даст сигнал, показанный на рис. 68, а .
Н. — Ты хочешь сказать разность этих двух сигналов? Хорошо, я могу найти ее графически. Подожди минутку… интересующий тебя сигнал я начерчу на рис. 71.
Рис. 71. При подаче на вход интегрирующей схемы прямоугольного сигнала с большим по сравнению с постоянной времени RC периодом на выходе получают сигнал с округленными фронтами, очень мало похожий на входной сигнал.
Л. — Очень хорошо. Как ты видишь, на выводах конденсатора находится тот самый сигнал, который мы получим на выходе схемы, приведенной на рис. 70. Этого можно было ожидать. При изменении входного сигнала сигнал на выходе реагирует не сразу, так как требуется некоторое время, пока конденсатор С зарядится до нового напряжения.
Н. — Фронты и срезы твоего прямоугольного сигнала стали наклонными и округленными. Для чего нужен такой сигнал?
Л. — Такой сигнал, как ты нарисовал, действительно не представляет большого интереса. Но предположим, что я увеличу произведение RC. Как при этом изменится форма сигнала на выходе?
Н. — Я предполагаю, что конденсатор С получит меньше тока (он увеличился и его потребности возросли), и поэтому он не успеет зарядиться к моменту прихода второго сигнала. Вероятно, в результате получим сигнал, форма которого показана на рис. 72.
Читать дальше